JpGU-AGU Joint Meeting 2017 May 20 to 25, 2017, Makuhari, Chiba, Japan

[S-CG70] Analysis and Prediction of Near-Source Strong Ground Motions: Present Status and Future Perspective

Long-period strong ground motions near the source fault of the 2016 Kumamoto earthquake

*Kojiro Irikura, Susumu Kurahashi (Aichi Institute of Technology)

Introduction 1

Surface ruptures:

- Surface rupture mostly occurred along fault traces mapped in previous active fault investigations. Approximately 34-km-long surface ruptures appeared along the eastern part of the Futagawa fault zone and the northernmost part of the Hinagu fault zone.
- Large slip with maximum dextral slip of 2.20 m was measured throughout the central section of the rupture zone along the Futagawa segment, and the slip gradually decreased bilaterally on the adjoining northeastern and southwestern sections.
- Slip exceeding 1 m occurred on previously unrecognized fault traces in the alluvial lowland of the Kiyama plain and on the western rim of the Aso volcano caldera.

After Shirahama et al. (2016)

Introduction 2

Near-field ground motions

- Near-field strong ground motions with high accuracy were recorded by the NIED strong motion network (K-NET and KiK-net) and the JMA and local-government seismic-intensity network. In particular, two stations at Mashiki Town-Hall (93051) station and Nishihara Village-Hall (93048) were located within 2 km of the surface traces along the Futagawa fault.
- The maximum displacement at 93051 is about 1.1 m in horizontal (N65E) and about 0.7 m in vertical (down).

The maximum displacement at 93048 is about 2.0 m in horizontal (N75E) and about 2.0 in vertical (down)

(Iwata, 2016)

Examples of slip distributions from the waveform inversion of strong motion data

Characterized source models with SMGAs (Irikura et al. 2017)

Three SMGA model based on the slip distribution of Yoshida et al. (2016)

A single SMGA model based on the slip distribution of Kubo et al. (2016a)

Comparison of the observed (*black*) and synthetic (*red*) ground motions of three components (east–west, north–south, and up–down)

Model 1: A single flat fault plane model with a SMGA

• Irikura et al. (2017) based on slip distribution of Kubo et al. (2016a)

Empirical Green's function method KMMH16(KiK-net Mashiki)

Model 2: A curved fault plane model with a SMGA

• Outer fault parameters are estimated based on Kubo et al.(2016b)

Comparison between synthetic motions by Model 1 and Model 2

Long-period ground motion from SMGA Assume a single SMGA in the seismogenic zone

Velocity structure

Very shallow: Borehole logging at KiK-net and K-NET sites Shallow: J-SHIS model V2 Deeper: Fukuyama et al. (2000) **SMGA** model Computation method: Discrete wavenumber method (Bouchon, 1981) Slip velocity time functions: Nakamura and Miyatake function with rise time of 5.0 sec M0 of SMGA : 2.16 × 10¹⁹Nm Area of SMGA: 12km × 10km Stress drop: 13.9 MPa

Long-period ground motions (velocity) from SMGA

Synthetic long-period motions from SMGA at near-fault stations are smaller than the observed.

Long-period motions _____ Obs. (5 10³ from SMGA _____ Syn. (2 10¹) Syn. (2 10¹)</sup>

have nearly the same level as observed at stations except very near-field stations 93048 and 93051.

Slip distribution of the Kumamoto earthquake from a weak nonlinear inversion of InSAR data (Fukahata and Hashimoto, 2016)

Long-period ground motions from LMGA

Assume a LMGA in surface layers above the seismogenic zone

Computation method: Wavenumber integration method (Hisada,2003)

Slip velocity time function: triangle function with rise time of 5.0 sec M0 of LMGA: 2.88 × 10¹⁸Nm Area of LMGA: 12 km x 2 km Slip: 4.0 m Depth of top of LMGA: 0 km

Long-period ground motions (displacement) from LMGA

LMGA-Model a: Length 12 km, Width 2 km Black: observed

Long-period ground motions (displacement) from LMGA LMGA-Model b: Length 20 km, Width 2 km **Black: observed** Red: Synthetic 93051 1, _____Qbs. 70.96cm LOGMSK_UD Obs. 73.16cm Syn: 30.73cm LOGMSK_EW.__Obs_120.0Zcm SVII. 168:87cm 33° 93048 **KMM005** 、阿蘇山 蘇大橋 Obs. 60.40cm LOGNHR EW LOGNHR_UD Obs. 222.00cm Syn: 305.73cm Obs. 198.00cm Syn. 69.84cm 益城町役 93048 KMMH06 *KMMH16 305 Emilian 32.8° **KMMH16** X KMMH16/EV KMMH16_UD Obs. 67.99cm Syn. 16.06cm Syn. 74.02cm Obs. 107.06cm Syn. 93.50cm Obs. km Hi-net震源 (4月16日-5月15日, M>1) [m] 20 30 20 30 10 20 30 0 0 10 0.0

32.6°

130.6°

130.8°

131°

Time_sec

Time_sec

Time_sec

Long-period ground motions (displacement) from LMGA

Long-period ground motions (displacement) from LMGA LMGA-Model d: Length 5 km. Width 2 km Black: observed **Red:** Synthetic 93051 33° 2600-00s-120.07cm Syn. 2.64cm LOGMSK UD LOGMSKANS 70.96cm LOGMSK/ Obs. 73.16cm Syn. 0.65cm **LMGA** 93048NHR Nanzobs. 60.40cm **KMM005** Obs. 222.00cm Syn. 62.13cm LOGNHR UD LOGNHR É Obs. 198.00cm Syn. 8.07cm 蘇大橋 益城町役場 93048 KMMH06 KMMH16 32.8° Obs. 107.06cm Syn. 4.08cm Obs. 67.99cm Syn. 2.63cm KMMH16/EW KMMH16 UD -59.58cm 1.87cm 9305 E km 10 30 20 20 10 30 10 20 30 10 n Hi-net震源 (4月16日-5月15日, M>1) Time sec Time sec Time sec [m] 0.0 3.5 32.6° 130.8° 131° 130.6

Modified Characterized Source Model Strong Motion Generation Areas (SMGAs) + Long-period Motion Generation Areas (LMGAs)

SMGAs are located inside the seismogenic zone on the source fault plane having slip time functions such as Kostrov-type (e.g. Nakamura-Miyatake, regularized Yoffe functions)

LMGAs are placed is inside near-surface layers above the seismogenic zone on the source fault plane having slip time functions such as smoothed ramp functions.

Long-period ground motions from SMGA + LMGA

• SMGA

M0:2.16 × 10¹⁹ Nm Area:12km × 10km Slip velocity time function: Nakamura-Miyatake function with rise time of 5.0 sec Stress drop: 13.9 MPa

• LMGA

M0:2.88 × 10¹⁸ Nm Area: 12 km × 2 km Slip velocity time function Triangle function with rise time of 5.0 sec Slip: 4.0 m

Long-period ground motions from SMGA + LMGA Velocity Displacement

LOGMSK_EW Obs. 108.00cm/s Syn. 75.80cm/s

Obs.

ALL

SMGA

LMGA

ALL

SMGA

LMGA

0

Obs. 120.07cm Svn: 179.63cm

LOGMSK_EW

Obs.

ALL

SMGA

LMGA

LOGMSK_UD Obs. 73.16cm Syn. 117.01cm Obs.

20

10

Time_sec

Time_sec

Summary

- 1. The ground motions of the 2016 Kumamoto earthquake (Mw 7.0) are well simulated using a characterized source model consisting of strong motion generation areas (SMGAs).
- 2. However, long-period ground motions (more than 3 sec) at very nearfault stations from SMGA are underestimated compared with observed motions.
- 3. The long-period ground motions including fling steps at very near-fault stations are well simulated when the long-period generation areas (LMGA) in near-surface areas of earthquake fault are taken into account in addition to the SMGAs.