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Boundary Shape Waveform Inversion for Two-Dimensional Basin Structure 

Using Three-Component Array Data of Plane Incident Wave 

with an Arbitrary Azimuth 

by Shin Aoi, Tomotaka  Iwata, Hiroyuki  Fujiwara, and Kojiro Irikura 

Abstract We extend a new waveform inversion scheme (Aoi et al., 1995) for 
estimating underground structure with an irregular-shaped basement as a target to 
cases where plane waves with an arbitrary azimuth impinge on the structure, i.e., 
from a direction not necessarily perpendicular to the major axis of the structure. We 
proved the validity of this scheme by numerical experiments. We had already 
achieved the formulation and numerical experiments for the cases where an SH wave 
impinges on a 2D basin structure and had shown that we could estimate the entire 
basin structure with seismic waveforms from only a few surface stations by using 
whole waveforms that include the surface waves. However, when the epicenter is 
located out of the plane including the observation stations, even the cases of 2D 
structure cannot be treated as a simple 2D (SH or P-SV) problem because of the 
wave with an azimuth that is not 0 °. Therefore, by dealing with 3D wave fields in 
the present study, we extend the inversion scheme in order to apply it to incident 
waves with an arbitrary azimuth. The differential seismograms, which represent the 
sensitivity of change in the waveform, show different patterns in three components, 
and we demonstrate that inversion with three components, compared with the inver- 
sion with only one of them, leads to a linearized equation system with a smaller 
condition number and a more stable computation. Furthermore, we detect certain 
parts that are estimated with much less difficulty than others, depending on the di- 
rection from which the incident wave impinged. In the latter case, we can estimate 
the entire structure by employing simultaneously several data from incident waves 
arriving from different directions. We thus demonstrate by numerical experiments 
that the extension of our inversion method to cases where the incident wave with an 
arbitrary azimuth impinges on the structure enables us to estimate with increased 
accuracy an underground structure under more general conditions of the epicenter 
locations. 

Introduction 

The detailed knowledge of an underground structure is 
very important, since the effects of a basin structure on the 
waveforms observed on the surface during an earthquake are 
considerable (e.g., Beck and Hall, 1986; Kawase and Aki, 
1989; Hatayama et al., 1995; Yamanaka et al., 1989). In 
order to estimate the underground structure, many methods 
such as the refraction method and the reflection method have 
been proposed. However, there are certain difficulties in em- 
ploying these methods. On one hand, with the refraction 
method, basically one can estimate only the structure that is 
located directly underneath the observation stations since the 
data used are only arrival times. The method does not allow 
us to perform a high-resolution analysis with data from a 
small number of observation stations. As to the reflection 

method, on the other hand, the acquisition of records is ex- 
tremely bothersome, and it requires artificial sources. 

The inversion method, which uses the observed data to 
determine the causes of these data, has attracted the attention 
of many researchers in various fields because of its objec- 
tivity. For instance, tomography techniques are widely used 
to estimate underground structure in the field of seismology. 
However, a high-resolution analysis with the existing to- 
mography technique requires numerous (several thousands 
or ten thousands) parameters. Thus, we proposed a new 
method to perform an inverse analysis of basin structure, 
which treats this problem as a domain/boundary inverse 
problem and requires a much smaller number of parameters 
(Aoi et al., 1995). The domain/boundary inversion (Kubo, 
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1992) is a method to formulate the inverse problem by pay- 
ing particular attention to the boundary shapes of several 
regions regarded as homogeneous. The method has already 
been used for more than 10 years in mechanical engineering 
(Barone and Caulk, 1982). For example, nondestructive in- 
spection has been carried out to determine the shapes and 
locations of cavities or cracks in metal by using the data 
from measurements such as electric potentials on the surface 
(e.g., Nishimura and Kobayashi, 1991; Tanaka and Yamag- 
iwa, 1988; Kubo et al., 1988). However, there are only a 
few applications of the domain/boundary inversion to seis- 
mology (Nowack and Braile, 1993; White, 1989). 

Concerning the basin structure treated in the present 
study, since the impedance ratio is quite large between a hard 
basement with a high wave velocity and a soft sedimentary 
layer with a low wave velocity, we consider that each of 
them consists of an approximately homogeneous elastic me- 
dium. In our previous study, by choosing a boundary shape 
with large impedance ratio between the basement and the 
sedimentary layer as a target parameter, we performed suc- 
cessfully the inversion with only a few dozens of parameters. 
In this way, we carried out a formulation and numerical ex- 
periments for cases where an SH wave impinges on a 2D 
basin structure and showed the validity of this method and 
its robustness against noise. A significant difference between 
the inversion of underground structure in seismology and 
nondestructive inspection in mechanical engineering con- 
sists in a spatial mal-distribution of the observation stations 
as well as sources in the former. In more concrete terms, as 
to nondestructive inspection, one can determine the locations 
of receivers or sources in such a way that they encircle the 
object, while in most seismic observations, the measure- 
ments have to be made on the surface. The source locations 
are limited even for natural earthquakes as well as for arti- 
ficial sources. Consequently, it was difficult to obtain suffi- 
cient data for carrying out the inversion. In order to reduce 
those difficulties, we decided to employ the waveform in- 

Figure 1. Configuration of the basin structure 
model and the incident wave. Plane wave with the 
incident angle 0 and the azimuth fa impinges on the 
2D basin structure model that lies along the y axis. 

version that uses as data the entire waveform instead of lim- 
ited information such as the arrival times. We came to the 
conclusion that in cases where a plane SH wave impinges 
on a 2D double-layered structure, the use of surface waves 
generated secondarily by the structure enables us to estimate 
completely the entire structure with data from only a few 
observation stations (Aoi et al., 1995). 

In the present study, we will extend the previous method 
explained above to cases where the incident waves with an 
arbitrary azimuth impinge on the structure. We consider the 
incident wave from deep earthquakes approximately as a 
plane wave. When the epicenter is located out of the plane 
including the observation stations, the azimuth of the inci- 
dent waves is not 0 °, and the direction from which they im- 
pinge becomes oblique to the 2D structure. In these circum- 
stances, even the cases of 2D structure cannot be treated as 
simple 2D (SH or P-SV) problems because of the incident 
wave with an oblique azimuth. Therefore, we will extend the 
inversion to the so-called 2.5D problem, which deals with 
3D wave fields for 2D structures, so that we will be able to 
apply it to incident waves with an arbitrary azimuth (e.g., 
Fujiwara, 1996; Pedersen et aL, 1995; Pei and Papageorgiou, 
1993). First of all, since three components in the differential 
seismograms show different patterns, it is preferable to carry 
out the inversion with three components than doing so with 
only one of them. This will be shown by the examination of 
condition number of linearized equation. Secondly, we will 
demonstrate that certain parts of the structure are easier to 
estimate than others, depending on the arrival direction of 
the incident wave. We will perform the inversions by using 
simultaneously the data from several incident waves arriving 
from different directions. Consequently, the extension of the 
present method to cases of incident waves with any azimuth 
impinging on the structure will enable us to perform the 
inversion with increased accuracy under more general con- 
ditions of the epicenter locations. 

Configuration of  the Model and the Incident Wave  

Figure 1 shows our assumed 2D basin structure model, 
which lies along the y axis and consists of two homogeneous, 
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Figure 2. Examples of the space distribution of the 
weight function system ck(x ) when K = 8. Thin and 
thick lines show the examples of c~(x) for k = 0 and 
k = 4, respectively. 
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isotropic, elastic media corresponding to a sedimentary layer 
and a basement. We will consider cases where the plane 
incident wave with an oblique azimuth impinges on this 
model. We define that the angle formed by the z axis and 
the wavenumber vector of the incident wave is the incident 
angle 0 and that the angle formed by the negative x axis and 
the projection of the wavenumber vector on the xy plane is 
the azimuth 9. 

When ~0 = 0 e, we can separate completely the S H  and 

P -SV  wave fields, which implies that it becomes a pure 2D 
problem. However, when (0 ~ 0 °, we have to treat this as a 
2.5D problem because of the reciprocal coupling of S H  and 
P - S V  wave fields. In this study, we carry out the waveform 
synthesis by using the boundary integral equation method 
formulated by Fujiwara (1996). By transforming the wave 
equation of the space-frequency domain into the wavenum- 
ber-frequency domain using a Fourier transformation only 
in the y direction, we obtain an equation that does not depend 
on y. This allows us to solve the problem of a 3D wave field 
for plane incident wave with an arbitrary azimuth within a 
reasonable computation time, which is only several times 
longer than that of a P - S V  problem. 

Function System and Parameters  to Describe 
the Boundary  Shape 

In order to formulate a boundary shape to be estimated 
for an inverse problem, the boundary shape has to be dis- 
cretized and described by several parameters. We denote this 
boundary shape if(x) as 

K + t  

if(x) - ~°(x) = ~ Pk x ck(x), (1) 
k=0 

where ire(x) denotes the boundary shape of the initial model. 
That is, the difference of depth between the initial and the 
target models is described by the expansion of the functions 
ck(x). We introduce the following as the function system 
{ck(x)lk = O, 1 . . . . .  K, K + 1}: 

1 n 
ck(x) = ~ {1 + cos ~ (x -- Xk) } ifxk_ 1 ~ X ~ Xk+l, 

0 otherwise 
(2) 

(k = 1,2 . . . . .  K) 

Co(X) = 

s i n 2 - ~ ( L  + x) i f -  L - -x - -<_  - L  + c~A 

l+cos( _ ~ (  -~A+x) 
i f - L  + c~A_--__x_- < - L  + A, 

0 otherwise 
(3) 

where a = 1/4 

CK+ I(X) = C0(--X),  (4) 

where the width of the basin is 2L ( -  L _--< x = L), and this 
is divided into K + 1 pieces, with K + 2 node points num- 
bered from 0 to K + 1. Its x coordinate is denoted as xk. 
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F i g u r e  3. Bas in  structures o f  mode l s  0, A, B, and  C. 
The  phys ica l  parameters  are shown  in Tables  1 and  2. 

Table 1 
M a x i m u m  Depths  and Shapes  o f  the Structure  Mode l s  

Model Shape Max. Depth (km) 

0 Parabola 1.00 
A Nonsyrmnetrical parabola 1.00 
B Plateau 1.50 
C Parabola 1.25 

Width of basin 10 km 

Table 2 
Physica l  Parameters  o f  Mode l s  0, A, B, and  C 

First layer Second Layer 

P-wave velocity a 2.0 km/sec 5.0 km/sec 
S-wave velocity fl 1.0 km/sec 2.5 km/sec 

Density p 1.2 g/cm 3 1.8 g/cm 3 
O value ~ oo 

0 
A 
B 
C 

Table 3 
Conditions in Each Case in Numerical Experiments 

Angle No. of Component of 
Case Model O ~o Obs. Point the Data 

A A 30 ° 45 ° 4 x,y,z 

B I a 45 ° 
Blb  B 30 ° 135 ° 4 x,y,z 

B2 45&135 ° 

C 1 C 0 ° 0 ° 3 x,y,z 
C2 only y 

In all cases, a time function of the incident wave is a Ricker wavelet with 
a characteristic period of 3 sec. 
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Figure 2 shows the spatial distribution of  the function system 
ck(x) when K = 8. This function system is obtained by add- 
ing Co(X ) and % +  l(X) to the function system used in Aoi  et 
al. (1995). We  add these two terms so that we can express 
the boundary shape with the minimum number of  divisions, 
since the edge of  basin is often steep. Except  for the basin 
edge, the parameter  Pk represents the difference in depth be- 
tween the initial and the target models at xk. The function 
system c~(x) is employed to give the depth at all points by 
interpolating these parameters. 

F o r m u l a t i o n  o f  the  I n v e r s i o n  

W e  denote the observation equation as 

Ui(Xm, t,; p) = rTir, m (for all i, m, n). (5) 

The model  parameter  p has to satisfy equation (5) best in 
the sense of  least square, where 
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Figure 4. Seismograms recorded at sutface sta- 
tions located within the basin for model A. Incident 
wave is a Ricker wavelet with a characteristic period 
of 3 sec that impinges on the models with the incident 
angle 0 = 30 ° and the azimuth q~ = 45 °. Only the 
waveforms from four stations indicated by • are used 
for the inversion in case A. The shape of the under- 
ground structure is shown on the right of the top seis- 
mogram. 
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Figure 5. Waveforms from file four surface sta- 
tions, indicated by • in Figure 4, which are used for 
the inversion in case A (solid line), and the synthetic 
waveforms for the initial model, model 0, correspond- 
ing to the same four stations (broken line). The shape 
of the underground structure is shown on the right of 
the top seismogram. 
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"ui(xm, t,; p): synthetic waveform of ith component 
under a model parameter p 

glen: observed waveform of ith component 
at Xm and t, (given) 

Xm: mth position 
t,: nth time sampling 
p: model parameter (vector) 

(Po, Pl . . . . . .  Pr, Pr  + 1) r 

This observation equation being nonlinear, we obtain its so- 
lution by a linearized iterative method. 

The left side of the observation equation is expanded in 
the Taylor series about the parameter p0 (the initial model) 
and is linearized by omitting the higher-order terms. 

Ui(Xrm tn; pO) q- r)_j, au__ ! 6pk ~- a~n~. (6) 
k=a apklp=p0 

OuilOpk represents differential seismograms. Since they can- 
not be obtained analytically, they are replaced by finite- 
difference approximation. 

au__2i ~_ ui(xm, t.; p0 + A p k )  _ ui(Xm, tn; p0) 
0pk APk 

(7) 

where Apk is an appropriate positive number, 

Apk = (0 . . . . .  Apk . . . . .  O) r. 

Equation (6) is a simultaneous linear equation with a non- 
square matrix as its coefficient. We solve this equation by 

using a singular value decomposition method (e.g., Naka- 
gawa and Oyanagi, 1982). We constrain the correction value 
for parameters in such a way that it becomes less than 50% 
of the depth at the corresponding point of the initial model 
for each iteration step; i.e., 

i p i- 0.5 pO (8) 

for all k at all iteration steps. We construct the initial model 
for the next iteration step from this correction value for pa- 
rameters thus calculated. We use the square sum of the re- 
siduals of data in order to judge the degree of convergence. 
Having performed the iteration by linearized iteration 
method until this square sum becomes sufficiently small, we 
consider this converged model as the finally estimated 
model. 

N u m e r i c a l  Exper iment s  o f  Invers ion  M e t h o d  

We carry out various numerical experiments using dif- 
ferent models and conditions. Boundary shapes of these ba- 
sin structure models are shown in Figure 3. Table 1 shows 
the depths and the shapes of these models, and Table 2 
shows their physical parameters. The conditions of the nu- 
merical experiments used for the following cases are sum- 
marized in Table 3. 

Case A 

Figure 4 shows synthesized waveforms on the surface 
when a plane S V  wave [a Ricker wavelet (Ricker, 1977) with 
a characteristic period of 3 sec] impinges on model A (Fig. 
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Figure 6. Change of the square sum of the residuals after each iteration and the 
estimated model for the inversion in case A. The residuals are normalized by that of 
the initial model. The number of parameters is increased by four each time the residuals 
converge. The initial (model 0), target (model A), and estimated models obtained at 
each step of the hierarchy are shown, respectively, by (a) through (d). 
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3 and Tables 1 and 2) with the incident angle 0 = 30 ° and 
the azimuth ~0 = 45 ° (Table 3). In all components, the arrival 
time of direct waves reflects the thickness of the sedimentary 
layer at each point, and these waves are followed by domi- 
nant surface waves, secondarily generated by the irregular 
structure, especially near the edges of the basin. The surface 
waves in the z component, which contain only Rayleigh 
waves, are not dominant in the shallow part near the left 
edge and become dominant as the basin gets deeper. With 
the x component, though the pattern is different, we can 

observe a similar tendency. In contrast, as for the y com- 
ponent, the surface waves are generated similarly from both 
edges. Each component has thus a complex and different 
way to generate and propagate waves. 

Among these waveforms, we take those at four stations 
on the surface within the basin, shown by e, as our data and 
perform the inversion with model 0 (Fig. 3) as the initial 
model. The data (solid line) and the waveforms of model 0 
at the corresponding four stations (broken line) are overlap- 
ping in Figure 5. The residuals of each iteration step and the 
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seismogram. 
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estimated models in each hierarchical step are shown in Fig- 
ure 6. First of  all, we perform the inversion with K = 4. 
After the fifth iteration, where we can see the residuals be- 
coming constant, the inversion is further performed with K 
= 8. In this way, K is increased to K = 12 and K = 16. 
We conclude that the model  shown in Figure 6c is the ulti- 
mately estimated model  from the fact that the residuals do 
not decrease any more when K = 12 is increased to K = 
16. The result is already good when K = 4, and the final 
model  (when K = 16) corresponds perfectly to the target 
model, model  A, thus showing sufficient accuracy of the 
estimation of  structure. 

T h e  A r r i v a l  D i r e c t i o n  o f  the  I n c i d e n t  W a v e  
and  the  E s t i m a t e d  M o d e l  

Case B 1 

We carry out experiments with a more complex model, 
model  B (Fig. 3 and Tables 1 and 2), which has a shallow 
part in the middle. Figure 7 shows the waveforms that we 
obtain when a plane SV wave (a Ricker wavelet  with char- 
acteristic period of  3 sec) impinges on this model  with the 
incident angle of  0 = 30 ° and the azimuth of  (p = 45 ° (case 
Bla) ,  and Figure 8 shows a case (case B l b )  where the in- 
cident angle is 0 = 30 ° and the azimuth is (o = 135 ° (Table 
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Figure 9. Change of the square sum of the residuals after each iteration and the 
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(note that the scale of the vertical axis is logarithmic), and only the left side of the 
structure is more or less correctly estimated. 
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3). The waveforms are more complex in model B than in 
model A, because the surface waves are generated second- 
arily by the irregular structure of the elevated part as well 
as by that near the edges. In case Bla, the surface waves 
secondarily generated from the right end of the elevated part 
and near the right edge of the basin get mixed. Therefore, 
there are many phases at the right side of the elevated part. 
On the contrary, in case Blb, the surface waves are domi- 
nantly generated, and many phases are observed at the left 
side of the elevated part. Among these waveforms, we take 
those at four stations on the surface within the basin, shown 
by •, as our data and perform the inversion with model 0 as 
the initial model. The residuals of each iteration step and the 
estimated models in each hierarchical step from these inver- 
sions in cases B la and Blb are respectively shown in Figures 
9 and 10. In both cases, the residuals do not decrease suffi- 
ciently (note that the scale of the vertical axis is logarithmic), 
and the estimation of the structure is not precise. In fact, 
only the left side of the structure is more or less estimated 
correctly in case Bla, whereas only the right side is well 
estimated in case Blb. 

The present method enables us to estimate the entire 
structure with data from a small number of surface stations 
because we use not only direct waves but also surface waves. 
The advantage of the use of the surface wave, which prop- 
agates horizontally with information about the structure un- 
derneath, is that it contains information covering a wider 
range of underground structure compared with the direct 
wave that has only information concerning the structure just 
underneath the observation stations. When the structures are 
complex as in case Bla  or Blb, a complete inverse analysis 

can be difficult because of the phases that overlap, even if 
we also use information from surface waves. 

Case B2 

As we examined in cases Bla and Blb, the estimation 
of the entire shape may not be possible when structures are 
too complex. Nevertheless, certain parts of the structure can 
be estimated correctly, and these parts that are possible to 
estimate are different according to the azimuth of the inci- 
dent wave in each case. Therefore, in case B2 (Table 3), we 
perform an inversion using simultaneously two datasets of 
cases Bla  and Bib from four surface stations within the 
basin indicated by • in Figures 7 and 8. Figure 11 shows the 
residuals of each iteration step and the estimated models in 
each hierarchical step when we carry out the inversion. In 
this case, the residuals decrease sufficiently, and we are able 
to estimate the entire structure. As we have seen so far, there 
are certain parts that are difficult to estimate with the data 
from only one incident wave in cases of complex structure. 
In such cases, the simultaneous use of several waveforms 
from different incident directions enables us to estimate the 
entire structure with waveforms from a small number of ob- 
servation stations. 

Through the numerical experiments, we are able to find 
out the appropriate locations of observation stations or the 
arrival direction of incident wave, which are necessary to 
perform an accurate inverse analysis. In cases where the data 
are insufficient, we are also able to tell which part of the 
estimated structure can be trusted. Therefore, we should 
choose this part of the structure as the target of our analysis 
with a given dataset. 
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Figure l 1. Change of the square sum of the residuals after each iteration and the 
estimated model for the inversion in case B2. The simultaneous use of two waveforms 
(cases Bla and Blb) enables us to estimate the entire structure. 
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Figure  12. Seismograms ui and the corresponding differential seismograms Aui/ 
Apk. The top row shows the seismograms produced by a Ricker wavelet with a char- 
acteristic period of 3 sec that impinges on model 0 vertically from below. The second 
to the sixth rows show, respectively, the differential seismograms Aui/Apk of model 0 
for K = 8 that correspond to k = 0 through 4. For each AuJAp~, the shape of the 
functions ck(x), which is corresponding to the parameter Pk with respect to which the 
seismogram ui is differentiated, is indicated by broken lines with the basin models 
(solid line), at the right side of the figure. 
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Discussion 

Differential Seismograms 

We show that three components of differential seis- 
mograms have different time and space distributions in the 
simple 2D case. The top row of Figure 12 shows the seis- 
mograms u i produced by a Ricker wavelet with a character- 
istic period of 3 sec that impinges on model 0 vertically from 
below, ux and u z show, respectively, waveforms of radial and 
z components when an SV wave impinges, and Uy indicates 
a waveform of transverse component when an SH wave im- 
pinges. The second row through the sixth row are differential 
seismograms Aui/Apk when K = 8, each row corresponding 
to k = 0 through 4. For each Aui/Apk, the functions ck(x) 
corresponding to the parameters Pk, with respect to which 
the seismogram u i is differentiated, are indicated by broken 
lines with the basin models, at the right side of the figure. 

For all k, the following two parts are manifestly domi- 
nant in the differential seismograms AuJAp~ and Auy/Apk. 
One of them is the direct wave observed in places where 
ck(x) is not zero. The basis function ck(x) corresponds to the 
parameter Pk, with which the waveform, Ux or Uy, is differ- 
entiated. The other dominant part consists of the surface 
waves that propagate from this direct wave part. This char- 

acteristic becomes more evident in the differential seismo- 
grams corresponding to the parameter near the edge (k = 1, 
2). However, differential seismograms corresponding to the 
parameter P0 do not have large amplitude because the sedi- 
mentary layer is very shallow close to the edge (around x0), 
and the surface waves are not generated there. As we have 
seen, in spite of the common characteristic explained above, 
the time and space distributions and the amplitude are very 
different in each component. 

Condition Number of Linearized Equation 

Since differential seismograms show different patterns 
for three components, we can imagine that the inversion with 
three components is more advantageous than the inversion 
with only one of them. We demonstrate this by examining 
the condition number of the linearized equation (6). 

The condition number K, which is a quantity related to 
the propagation law of errors in the equation (e.g., Nakagawa 
and Oyanagi, 1982), is defined as x = lq/l~ m. lq  and ktm 
denote, respectively, the maximum and minimum singular 
values of the coefficient matrix of the linearized equation. 
The relative error of the solution is known to be smaller than 
that of the data multiplied by K. Because of noise in data or 
errors generated by lineafized approximation in nonlinear 
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each iteration and the estimated model for the inversion with three components. 

problems, it is important to have a small condition number 
in order to perform a stable inversion. 

Case C 

Here we compare the inversion using three components 
with that using only one component in a simple 2D problem 
where the azimuth and incident angle are both 0 ° (vertical 
incidence). We perform the inversion with model C (Fig. 3 
and Tables 1 and 2) as the target model and model 0 as the 
initial model. In this case, we do not impose the constraint, 
equation (8), to achieve a stable computation that we im- 
posed to solve the linearized equation (6), since the*purpose 
is to examine the process of each inversion. The residuals 
and the estimated models in each iteration step of the inver- 
sion with only one component (SH component) are shown 
in Figure 13 (case C1), and case C2 with both P-SV and SH 
components is shown in Figure 14 (Table 3). Comparing 
these results, we can see that the condition number is smaller 
and the convergence is more rapidly achieved in the latter. 
We also know that although the final estimation is correct 
in both cases, it is more unstable to process the inversion in 
the case with only one component. Therefore, we conclude 
that the use of three components allows us to estimate the 
basin structure with increased accuracy and speed of con- 
vergence. 

Conclusions 

We extended our new waveform inversion method with 
boundary shape as its target to cases where the plane wave 
with an arbitrary azimuth impinges on the 2D structure and 
carried out numerical experiments. 

Even if the structure is 2D, this cannot be treated as a 
simple 2D problem because of the wave with an azimuth 
that is not 0 °. Therefore, we treated it as a so-called 2.5D 
problem of boundary integral equation method so that we 
can perform the inversion for plane waves with an arbitrary 
azimuth. Such an expansion enabled us 

• to perform the inversion also in cases where the epicenter 
has any azimuth to the structure and 

• to perform a more stable inversion compared to an inver- 
sion with only the SH component since we can use wave- 
forms of three components as data. 

The latter was demonstrated through the facts that the three 
components in the differential seismograms, which are the 
kernels of the inversion, have different patterns; that the con- 
dition number of the linearized equation is smaller; and that 
the numerical experiments provide a stable process. 

Using numerical experiments, we also showed that cer- 
tain parts in the structure are easier to estimate than others, 
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and it depends on the arrival direction of the incident wave. 
We demonstrated that in such a case, we can estimate the 
entire structure by using simultaneously the data from inci- 
dent waves from several directions. 

The numerical experiments showed us that the exten- 
sion of the present inversion scheme to cases where plane 
waves with an arbitrary azimuth impinge on the structure 
leads us to an estimation with increased accuracy and rapid- 
ity of convergence under more general conditions of the ep- 
icenter locations. 
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