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Waveform Inversion for Determining the Boundary Shape 

of a Basin Structure 

by  Shin  Aoi ,  T o m o t a k a  Iwata ,  Koj i ro  Ir ikura,  and  Franc i sco  J. S~inchez-Sesma 

Abstract We developed a method for estimating the boundary shape of a basin 
structure using seismograms observed on the surface. With this waveform inversion 
scheme, an accurate estimation is possible with data from a few surface stations, 
because seismic waves are affected not only by the local structure beneath the ob- 
servation station but also by the entire basin structure. Numerical experiments were 
successfully carried out to determine the boundary shapes from observed surface 
records for a two-dimensional S H  problem. For simplicity, only the boundary shape, 
that is thickness variations in the sedimental layer, was used as model parameters. 
This nonlinear problem is solved iteratively. To avoid the instabilities resulting from 
inappropriate initial models or from a large number of parameters, a hierarchical 
method, in which the number of parameters are increased gradually, is developed. 
We also successfully performed the inversions when the given parameters contain 
some errors and when the data contain noise. 

Introduction 

When seismic waves impinge on a basin from below, 
the seismic waves observed on the surface of that basin are 
affected by the physical properties and boundary shape of 
the basin. Ground motions of large amplitude and long du- 
ration are considered to be caused by the reverberation of S 
waves in soft sediments or to be surface waves generated 
secondarily at the basin's edges. In the 1985 Michoacan 
earthquake of Ms 8.1, Mexico City was severely damaged, 
although it is located more than 400 km from the epicenter. 
The damage was concentrated in a soft sediment area, the 
so-called lake zone. Compared with records from a surface 
station on a hill zone (bedrock) only 5 km from a lake-zone 
station, the peak accelerations recorded in the latter zone 
were about five times larger, and the duration was much 
longer (e.g., Beck and Hall, 1986). Many observations con- 
firm the extraordinary effect of subsurface topography in 
other areas as well (e.g., Yamanaka et al., 1989). 

Many methods have been proposed for the calculation 
of synthetic waveforms in a laterally irregular structure: 
the Aki-Lamer method (Aki and Lamer, 1970), the finite- 
difference method (e.g., Boore, 1972), the finite-element 
method (e.g., Smith, 1975), and the boundary-element 
method (e.g., SLqchez-Sesma and Esquivel, 1979). Forward 
modeling performed with these methods has shown numer- 
ically that seismic waves of large amplitude and long dura- 
tion occur (body waves amplified by soft sediments and sur- 
face waves generated secondarily at the edges of a basin) 
even for a simple body wave that impinges on the basin 
structure (e.g., Horike, 1987; Kawase and Aki, 1989). Fur- 

thermore, waveforms recorded on the surface have been 
shown to vary with the shape of the basin boundary (Bard 
and Bouchon, 1980). 

The purpose of our study was to estimate the boundary 
shape of an underground structure by waveform inversion 
using seismograms observed on the surface. This is a type 
of domain/boundary inversion (Kubo, 1992), a method for 
estimating the boundary shapes of several regions regarded 
as homogeneous. The inversion using the shape of the 
boundary as the model parameters has already been studied 
in mechanical engineering. For example, there are some 
studies for detecting the shapes and locations of cracks from 
the static, or occasionally dynamic, responses of mass (e.g., 
Nishimura and Kobayashi, 1991; Tanaka and Yamagiwa, 
1988). Another example is a study of the shape optimal prob- 
lem (Barone and Caulk, 1982). In exploration geophysics, 
there have also been some attempts to estimate the boundary 
shape of the velocity discontinuity by applying the refraction 
(White, 1989) or the reflection method (Nowack and Braile, 
1993) for the seismic wave. However, the resolution of the 
refraction method is low since it uses only a limited infor- 
mation at the arrival time. This does not fully utilize the 
information coming from the data. In the case of the reflec- 
tion method, the data acquisition takes a long time since it 
spatially requires many observation data. Therefore, we will 
propose a method to estimate the underground structure by 
using the entire waveforms from earthquakes recorded at the 
small numbers of surface stations, including not only the 
direct waves but also the later phases. 
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In many cases of realistic geological structure, both sed- 
iment and basement layers are considered to be roughly ho- 
mogeneous in the light of the high impedance ratio between 
them. Therefore, we assume that the basin structure dis- 
cussed here is composed of two homogeneous layers divided 
by an irregular interface. We also assume that average ve- 
locities for the layers are known, and we seek to estimate 
the boundary shape. The boundary shape can be estimated 
directly from observed seismograms, using a small number 
of parameters to describe the boundary. We have assumed 
a two-dimensional problem and formulated a boundary 
shape waveform inversion for a plane SH wave impinging 
on a two-layered structure, and we have examined the va- 
lidity of this inversion using numerical experiments. Inver- 
sions were performed for a given S-wave velocity and den- 
sity for each layer and a given basin width. Since this is a 
nonlinear inverse problem, the solution is obtained by the 
linearized iterative method. To avoid computational insta- 
bilities (divergence or oscillation of the parameters) resulting 
from an inappropriate initial model or from a large number 
of parameters when the inversion is performed, the hierar- 
chical method, in which the parameters are increased grad- 
ually, is proposed. We also performed the inversions when 
the assumed velocities are incorrect and when the data con- 
tain noise. 

Effects of the Basin Structure on Seismic Waves 
Recorded on the Surface 

To evaluate seismic waveforms on the surface when a 
plane SH wave impinges on a basin structure, we consider 
a basin structure model that consists of a homogeneous, iso- 
tropic, elastic layer underlain by a homogeneous, isotropic, 
elastic half-space. A two-dimensional (2D) SH problem is 
assumed, and the seismograms on the surface, when a plane 
SH wave impinges from the half-space, are calculated using 
the boundary-element method (S~-achez-Sesma et al., 1993). 

We investigated a basin structure (model 0 in Fig. 1 and 
Tables 1 and 2). Its width is 10.0 km, fl~ = 1.0 km/sec, t2 
= 2.5 km/sec, Pl = P2, and its maximum depth is 1.0 km. 
The boundary shape is a parabola (fl represents the S-wave 
velocity and p the density, and the suffix depicts the layer 
number.). A plane SH Ricker wavelet (Ricker, 1977) with 
the characteristic frequency offc, 

u(t) = (2rcz~t 2 - 1) exp(-zc2~t2), (1) 

where u(t) is displacement, was used as the incident wave. 
Seismograms on the surface when a Ricker wavelet with the 
characteristic period of 2 sec impinges on model 0 vertically 
from below are shown in Figure 2a. For simplicity, attenu- 
ation of the seismic wave in the propagation media is not 
considered in this investigation. Although the incident wave 
is a simple Ricker wavelet, its later phases are as equally 
prominent as direct waves. These later phases are surface 
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Basin structures of models 0, A, B, and 
C. The shear-wave velocities fl~ and t2 are respec- 
tively 1.0 and 2.5 km/sec, and the density Pl is given 
as equal to P2 for these four models. 

Table 1 
Maximum Depths and Shapes of the Structure Models 

Shape Max, Depth 

Model 0 parabola 1.00 km 
Model A trapezoid 0.75 krn 
Model B nonsymmetrical parabola 1.00 km 
Model C parabola 1.25 km 

Width of basin 10 km 

Table 2 
Physical Parameters of the Structure Models 

First Layer Second Layer 

S-wave velocity fl 1.0 km/sec 2.5 km/sec 
Q value o~ 

Density p P~ = Pz 

waves generated secondarily at the edges of the basin (e.g., 
Horike, 1987). 

We performed a one-dimensional (ID) analysis to learn 
the influences of lateral heterogeneity on seismogram on the 
surface. We assumed a horizontally homogeneous, stratified 
structure based on the local structure beneath each surface 
station and calculated the surface waveform generated by a 
vertically incident SH wave from below by using the Has- 
kell's method (Haskell, 1953). We call this a 1D analysis in 
the sense that it evaluates only the effect of the vertical het- 
erogeneity. The synthetic waveform obtained by this 1D 
analysis (Fig. 2b) is composed of a direct body wave and 
small reverberations within the surface layer. The remarka- 
ble surface waves seen as later phases in the 2D analysis are 
not reproduced in the 1D analysis. Hence, when the structure 
varies laterally, the observed waveform on the surface is 
influenced not only by the local structure but by the entire 
structure. This suggests that if we use the full waveform, 
including the later phases, we may be able to estimate the 
entire structure for a two-dimensional problem using data 
from only a small number of stations. In contrast, if only the 
arrival time and direct wave are used, records from numer- 
ous stations are required to estimate the underground struc- 
ture. The incident wave used in our numerical experiments, 
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therefore, is a Ricker wavelet with a characteristic period of 
2 to 3 sec, for which the surface wave generated secondarily 
becomes prominent for the basin structure model assumed. 

F o r m u l a t i o n  o f  the Inve r s ion  

Basis Functions and Model Parameters for the 
Boundary Shape 

We require a means of representing the boundary shape 
using a limited number of parameters. I t  is convenient if  the 
boundary shape if(x) is represented by the basis function ck(x) 
and the real number parameter Pk as 

~(x) = ~ pk x ck(x). (2) 
k 

We therefore introduce the function system { ck(x)lk = 1, 2, 
. . . .  K}, 

c k ( x ) = [ ~ / 2 +  l l2c°s{n lA(x -x~)}]  ifxk-l<-x<-xk+~otherwise. 

(3) 

The basin is located in the range of - L  < x < L and has a 
width of  2L. The boundary is divided equally into K + 1 
parts with K + 2 nodes [an interval A = 2L/(K + 1)]. The 
first and last nodes being excluded, these K nodes are num- 
bered from 1 to K. The x coordinate of  the kth is denoted by 
xk. Examples of  the spatial distribution of the function sys- 
tem c~(x) for K = 9 are shown in Figure 3. The solid line 
represents ck(x ) for k = 4. The boundary shape to be esti- 
mated, (, is denoted with this function system as 

K 

((x) = C°(x) + ~ Pk X ck(x), (4) 
k = l  

where ~°(x) denotes the shape of  the initial model. The pa- 
rameter Pk physically represents the difference in depth be- 
tween the target and initial models at x~, ((xk) - (°(xk). The 
function system ck(x) interpolates the pks, giving the bound- 
ary depth at all discretized points. 

Formulation of the Inversion 

The observation equation is 

U(Xm, t.; p) = tTm. (for all m, n). (5) 

The left side, u(xm, t,; p), is a synthetic waveform at the mth 
position, xm, and the nth sampling time, t,, for the vector of  
the model parameters p (p = (Pl, P2 . . . . .  Px)). The right 
side, t~,~, is the observed waveform (given) at x m and t,. The 
vector parameter p is determined to satisfy equation (5) in a 
least-squares sense. 

As this is a nonlinear inverse problem, the solution is 
obtained by the linearized iterative method. A Taylor series 
expansion is performed on the left side of  equation (5) about 
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Figure 2. Synthetic seismograms at ground sur- 
face for model 0 for a Ricker wavelet with a charac- 
teristic period of 2 sec (vertical incidence). The un- 
derground structure is shown on the right side of the 
seismogram: (a) the 2D analysis (BEM) and (b) the 
1D analysis (Haskell method). Although there is sim- 
ilarity in the direct wave part in both figures, the sur- 
face waves are predominant only in the 2D case. 
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Figure 3. Examples of the space distribution of the 
weight function system ck(x) when K = 9. Solid line 
shows the example of ck(x) for k = 4. 

the parameter pO, where p0 is the vector of  the model param- 
eters for the initial G°(x). By omitting the higher-order terms, 
this equation is linearized as 

U(Xm, t.; p0) + ~ OU 5pk = am.. (6) 
k = l  ~ P k  p=pO 
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Because the differential seismogram Ou/Opk cannot be ob- 
tained analytically, we replace it with a finite-difference ap- 
proximation. Approximating equation (6) with finite differ- 
ences, we obtain 

~ U(Xm, tn; p0 + Apk) -- U(Xm, t,; p0) 

k= 1 mpk 

= am, - u(x~, t,; pO), (7) 

where Ap~ is an appropriate positive number, and Apk = (0, 
. . . .  0, Ap~, 0 . . . . .  0). Equation (7) is a set of simultaneous 
linear equations whose coefficient matrix is nonsquare. We 
use the singular value decomposition method to solve this 
equation (e.g., Aki and Richards, 1980; Nakagawa and 
Oyanagi, 1982). 

In the inversion process described, the correction value 
for each parameter is determined. Using this value, we con- 
struct the starting model for the next iteration. The square 
sum, ~]m.,[am, -- U(p)] 2, of the residuals between the data 
and synthetic seismograms is used to check the degree of fit 
of the models. The solution that converges by the use of this 
linearized iterative method is considered the best model 
when the residuals are sufficiently small. 

To perform a nonlinear inversion with an iterative 
method, an appropriate initial model that consists of a pr ior i  

information is necessary. This is a problem that we have to 
face inevitably, and without enough a pr ior i  information, 
the inversion cannot be performed. However, in many cases, 
we have some information of the underground structure 
given by the borehole logs, gravity exploration and seismic 
exploration, such as reflection method and refraction 
method. These pieces of information often enable us to con- 
struct an appropriate initial model, with which we can esti- 
mate a basin structure with seismic data. 

Differential Seismograms 

When inversion of a boundary shape is performed using 
seismograms on the surface, the coefficient matrix of the 
linearized observation equation E Ou/Opk • 8pk ~- a - u(p °) 
is required. As stated earlier, Ou/apk, the differential seis- 
mogram, is replaced by the finite difference Au/Apk in our 
method. This represents a sensitivity of a change in the 
waveform that corresponds to the change of the kth model 
parameter Pk. 

The case discussed here has nine model parameters (K 
= 9). Figure 4 shows the time and space distributions of the 
differential seismograms that correspond to the waveforms 
in Figure 2a; the differential coefficient Au/Apk(k = 1 - 5) 
corresponds to the coefficient o f r p l  ~ 61)5. These differential 
seismograms are calculated with Apk = 5 × 10 -3 km; i.e., 
A p J L  = 10 3, since L = 5 km. This is considered to be a 
good approximation of Ou/Opk because the value of Ap~ is 
sufficiently small compared with the width of the basin and 
the maximum depth (1 km). Moreover, the finite-difference 

value, Au/Ap~, is almost constant in the range of A p J L  = 
10 -2 -- 10 -4. Figure 4 indicates that lateral change in the 
layer depth influences not only the direct waves above but 
also secondarily generated surface waves of the seismo- 
grams at all the surface stations. In addition, the change in 
depth near the edge of the basin has a greater effect on the 
surface seismograms than does the change in depth in the 
central part of the basin (e.g., compare Figs. 4a and 4e). The 
fact that the time and space distributions of Au/Apk totally 
differ depending on k suggests the possibility that we can 
invert the model parameters with sufficient resolution. 

The differential coefficient Au/Apk is obtained by re- 
peated computation of synthetic waveforms by forward 
modeling for many perturbed structures. When the bound- 
ary-element method is used, the most significant part of the 
computation consists of obtaining the Green's functions. 
Computation of the Green's functions is needed again only 
for those corresponding to the perturbed parts of the struc- 
tures. The computation time needed for the inversion there- 
fore can be greatly reduced because the same process is not 
repeated when local parameters are used. 

Hierarchical  Scheme of  Inversion 

When performing the inversion, computation becomes 
unstable (it means that parameters diverge or oscillate) if the 
given initial model is not appropriate or the number of pa- 
rameters is too large. In such cases, a hierarchical scheme 
of inversion can improve the unstable computation. Though 
it is unnecessary to use the hierarchical method when an 
initial model is known to be appropriate, the use of this 
method is not harmful, which just requires more steps in the 
inversion. In all other cases, this method is useful in stabi- 
lizing the computation. 

Appropriate Initial Model 

A boundary shape can be estimated even from a few 
surface stations when the inversion is performed with an 
"appropriate" initial model, as described in detail in the next 
section. An appropriate initial model here means that Afm~ 
is small enough compared with (max, 

A~',,,o~ = m a x  l ( ( x )  - ~r°(x)  l ,  
x 

where G°(x) and ((x) respectively are the depths of the initial 
and target models and (,,o~ is the maximum depth of the 
sediment. Obviously, to select an appropriate initial model, 
one must incorporate all available a pr ior i  information about 
the basin. 

In solving this kind of nonlinear inverse problem, use 
of an inappropriate initial model leads to divergence or os- 
cillation of the parameters in the early steps of iteration, and 
this unstable computation makes it difficult to extract the 
information contained in the data. 
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Figure 4. Differential seismograms Au/Ap~ of model 0 for K = 9. (a), (b), (c), (d), 
and (e) correspond to k = 1, 2, 3, 4, and 5, respectively. 

Hierarchical Scheme 

Since the inversion tends to be unstable when there are 
many parameters, we introduced a hierarchical scheme (e.g., 
Kubo et al., 1988). This is a scheme to perform a stable 
inversion without losing the resolution of the data: First, 
inversion is performed iteratively with a small number of  
parameters until the residuals converge, then the number of  
parameters is increased. For each increase in the number of  
parameters, additional iterations are made until the residuals 
again converge. Eventually the residuals stop decreasing, in 
spite of  the increase in the number of  parameters, when the 

number of  parameters required to reproduce the target model 
is reached. The minimum number of  parameters required to 
match the observation can be estimated roughly in this way. 

N u m e r i c a l  Tes ts  o f  Inve r s ion  M e t h o d  

In our numerical experiments, we use waveforms syn- 
thesized from a target model as pseudo-observed data in or- 
der to show the usefulness of  boundary shape inversion. 

Models A and B in Figure 1 and Table 1 are the target 
models. The physical constants of each layer in both models 
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are listed in Table 2. Our data consist of the synthesized 
waveforms taken from several stations on the surface within 
the basin, computed assuming an incident plane SH wave 
with a Ricker wavelet time function. 

The S-wave velocity and density for each layer, the 
width of the basin, and the angle and pulse shape of the 
incident wave, assumed to be given without error, are given 
as a priori  information. The case in which there are errors 
in these parameters is discussed later. For simplicity, the 
attenuation in propagation is not considered in this study, 
and the Q values for both layers are given as infinite. Oth- 
erwise, the Q values could be parameters to be estimated, 
although perhaps not uniquely. We used model 0 as the in- 
itial model, as described in Figure 1 and Tables 1 and 2. 

Case A: Model A as the Target Model 

The solid lines in Figure 5 show the waveforms synthe- 
sized for three surface stations, using a Ricker wavelet with 
a characteristic period of three seconds impinging on Model 
A vertically from below. The data length is 8.7 sec, from 

- 1.9 to 6.8 sec (sampling rate is 12.8 Hz). The broken lines 
show the waveforms synthesized from the same incident 
wave that impinges on the initial model. 

These waveforms were used as pseudodata in the in- 
version with nine model parameters (K = 9). The estimated 
models and the residuals of each iteration step are shown 
respectively in Figures 6 and 7. The residuals are normalized 
by that of the initial model. The residual decreases until the 
fourth iteration, becoming almost constant thereafter. The 
target model is estimated exceptionally well by the fourth 
iteration. 

Thus, under ideal conditions, the shape of an entire 
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Figure 5. Seismograms recorded at three surface 
stations for the target (model A) and initial (model 0) 
models shown respectively by solid and broken lines. 
They were produced by a Ricker wavelet with a char- 
acteristic period of 2 sec impinging on the models 
vertically from below. The incident wave is shown in 
the bottom trace. 

structure can be estimated with data from only a few surface 
stations when the full waveforms, including the later phases, 
are used. 

Case B: Model B as the Target Model 

In this case, our target is model B, and the initial model 
(model 0) is not as close to the target model as it was in case 
A; therefore, the hierarchical scheme is used. The basin of 
the target model has a smooth, lateral gradient in thickness, 
which increases to a maximum depth of 1.25 km and trun- 
cates sharply near the right side of the model. The solid lines 
in Figure 8 show waveforms synthesized for four surface 
stations using a Ricker wavelet with a characteristic period 
of 3 sec impinging on model B at the incident angle of 15 ° 
to the left of the vertical line. The data length is 16.4 sec, 
from - 1.9 to 14.5 sec (sampling rate, 12.8 Hz). The broken 
lines show the waveforms synthesized from the same inci- 
dent wave that impinges on the initial model, model 0. The 
waveforms shown by the solid and broken lines differ mark- 
edly. This indicates that the initial (model 0) and target 
(model B) models are not likely to be close. 
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Figure 6. Results of the inversion. The initial 
(model 0), target (model A) models, and estimated 
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iterations are shown respectively by (a), (b), (c), and 
(d). 
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Figure 8. Seismograms for the target (model B) 
and initial (model 0) models shown respectively by 
solid and broken lines. They were produced by a 
Ricker wavelet with a characteristic period of 3 sec 
impinging on the models from below at an angle of 
15 ° to the left. 

Using these waveforms, we first performed the inver- 
sion with four parameters (K = 4). The residual of each 
iteration step is shown in Figure 9. The residual decreases 
until the fourth iteration, becoming almost constant there- 
after. After the fourth iteration, the number of model param- 
eters is increased from 4 to 8, after the 8th iteration to 12, 
and after the 10th to 16. As the parameters are increased by 
fours from 4 to 12, the residuals decrease; yet, there is no 
further decrease when the parameters are increased to 16. 
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i i - X K = 1 6  
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Figure 9. Change in the square sum of the resid- 
uals after each iteration in the inversion for case B. 
The residuals are normalized by that of the initial 
model. In the hierarchical scheme, the number of pa- 
rameters is increased by four each time the residuals 
converge. 

This means that the data can be explained by a model with 
12 parameters. 

In each step of the hierarchical inversion, the estimated 
model is compared with the target model (Fig. 10). Even 
with four parameters, the left half of the structure is well 
estimated (Fig. 10a); the right half is not so well estimated 
because these four parameters cannot express the steep edge 
of model B. An increase of number of the parameters to 8 
improves the estimation of the right side (Fig. 10b). With 12 
parameters, the entire target model, including the right side, 
is estimated almost perfectly (Fig. 10c). In this case, 12 pa- 
rameters sufficiently reproduce the model, which is consis- 
tent with earlier results for the convergence of residuals. 

We conclude that when the hierarchical scheme is used, 
larger range of model parameters can be used for the initial 
model. 

Further Tests with Noise and with Errors 

Numerical experiments showed that the entire boundary 
shape can be estimated with noise-free data from only a 
small number of surface stations when the full waveforms 
including the later phases are used and when there are no 
errors in the initial velocity assumptions. Here, we discuss 
the effects of two types of errors (noise contained in the data 
and errors in the given parameters: the assumed velocity and 
incident angle) on inversion results. 
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Figure 10. Results of the inversion. (a) through 
(d) show the initial (model 0), target (model B), and 
estimated models at each step of the hierarchy. 

Effects of  Noise in the Data 

Inversion is performed with data to which Gaussian 
noise has been added artificially in order to examine the 
effects of noise. The data were a wave field generated by a 
Ricker wavelet that has power in a very narrow band in the 
frequency domain. Therefore, Gaussian noise of  zero mean 
and normal distribution is bandpass-filtered in the band- 
widths 2 to 5 sec, and then added to the data to include noise. 

The target model, model C, is shown in Figure 1 and 
Tables 1 and 2. The broken line in Figure 11 shows wave- 
forms (without noise) synthesized from a Ricker wavelet 
with a characteristic period of  3 sec, impinging vertically on 
model C from below. The data constructed by adding noise 
to these waveforms are shown by the solid line in the same 
figure. Figures 12a and 12b respectively show the wave- 
forms at the center of  the basin in the time and frequency 
domains. When the noise ratio is defined as Zlnoisel/'Zldatal 
in the frequency domain, the noise ratio for the data in Figure 
11 is approximately 12%. 

Results of  the inversion are shown in Figure 13; model 
0 was used as the initial model. The model is successfully 
estimated when K = 4 and K = 8. The fact that the model 
can also be estimated with data containing noise reveals the 
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Figure l l.  Data used to examine the effects of 
noise on inversion. Broken line: data without noise. 
Solid line: data with Gaussian noise with zero mean 
and normal distribution bandpass-filtered between 2 
and 5 sec. 
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Figure 12. Data with (broken line) and without 
(solid line) noise at the center of the basin (x = 0) in 
the (a) time and (b) frequency domains. 

significant potential of  this method for dealing with real data. 
But for a large number of  parameters, such as K = 12, small 
fluctuations that do not exist in the target model appear in 
the estimated model. These fluctuations occur because the 
number of  parameters was increased beyond the amount of  
information contained in the data. The appropriate number 
of  parameters therefore must be determined from the S/N 
ratio. The hierarchical inversion approach is ideally suited 
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to select an appropriately parameterized model. Statistical 
tests, such as the Akaike information criterion [(AIC) e.g., 
Nakagawa and Oyanagi, 1982] or the Akaike Bayesian in- 
formation criterion (ABIC) could be used to select an appro- 
priate number of model parameters. 

Errors in Given Parameters 

In the numerical tests discussed earlier, we assumed that 
parameters such as the S-wave velocity, density, and incident 
angle are known, except for the parameters of boundary 
shape. Actually, such given parameters contain certain er- 
rors. Therefore, we examined the effects on the inversion 
results by an error in S-wave velocity and by an error in 
incident angle. 

In the first example, the S-wave velocity of the first layer 
is given as 5% faster than the true value. The data used for 
the inversion are the synthetic waveforms generated by a 
Ricker wavelet with a characteristic period of 3 sec imping- 
ing vertically on model C from below (Fig. 14). The same 
model 0 was used as the initial model, except for fl~ = 1.05 
km/sec. As shown in Figure 15, the results closely reflect 
the true structure, but it is estimated to be about 10% deeper 
than the target structure. Since a trade-off exists between 
velocity and depth (Ammon et aL, 1990), it is difficult to 
determine the absolute value of seismic wave velocity and 
the depth of the structure simultaneously in most seismic 
exploration methods, although there are some attempts to 
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Figure 14. Seismograms recorded at four surface 
stations for the target (model C) and initial (model 0) 
models shown respectively by solid and broken lines. 
They were produced by a Ricker wavelet with a char- 
acteristic period of 3 sec impinging on the models 
vertically from below. 
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Figure 13. Results of inversion with data contain- 
ing noise. The correct model can be estimated with 
data containing noise (a) and (b), but undesirable fluc- 
tuation occurs when too many parameters are intro- 
duced (c). 

Figure 15. Results of inversion with model 0 as 
the initial model but with fll = 1.05 km/sec. The es- 
timated model closely reflects the target structure but 
is estimated as being deeper than the target. 

separate them (Olsen, 1989). The estimation of a deeper 
structure when an erroneously fast seismic wave velocity is 
assumed is therefore expected. 

The second example is for an error in the incident angle. 
The data obtained from model C are used, and the inversion 
was performed with model 0 as the initial model. The given 
incident angle is vertical, whereas the true incident angle is 
5 ° to the left. The results of inversion shown in Figure 16 
closely reflect the true structure, but the left half of the in- 
verted boundary shape is estimated to be shallower and the 
right half deeper than the target. This is due to the phase 
shifts created by the error in the assumed incident angle: On 
the left side of the basin, the phases shift later than the true 
ones, whereas the phases shift earlier on the right side. 

Although the noise contained in the data and the errors 
in the given parameters affect the estimations, our tests sug- 
gest that the models can be roughly estimated as long as the 
noise in the records used in the inversion is less than 15% 
and the errors of S-wave velocity and the incident angle are 
respectively within 5% and 5 ° . 
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Figure 16. Results of inversion with model 0 as 
the initial model when the given incident angle is ver- 
tical, whereas the true incident angle is 5 ° to the left. 
The estimated structure closely reflects the target 
structure, but the left half is estimated as being shal- 
lower and the right half as being deeper than the target. 

Discussion 

A question of extending this method to 3D structures 
remains, since we cannot actually expect an ideal 2D struc- 
ture, though a 2D SH problem was assumed for this study. 
Nevertheless, the wave fields in some basin structures were 
well explained by the 2D forward modeling (e.g., Yamanaka 
et al., 1989, 1992). In these cases, the 2D problems are sig- 
nificant for realistic applications. Moreover, the formulation 
in the basic 2D problems is useful as the first step, which 
can then be extended to invert fully 3D structures. 

When the effects of 3D structure are strong, 2D inver- 
sion will become insufficient. Therefore, we must also dis- 
cuss the possibility of extending the method to 3D inverse 
problems. The rapid progress in computers has recently 
made it possible to solve the 3D problems. However, this 
does not imply that the 3D inverse problems, especially the 
nonlinear inverse problems, can be solved immediately for 
the following reasons. First, in order to perform an inversion, 
the forward problems have to be solved repeatedly, which 
takes a long time. Second, the parameters to be estimated in 
a 3D inverse problem are increased by square compared with 
those in a 2D inverse problem. Moreover, we face a diffi- 
culty in obtaining data from many surface stations to cover 
a target area. The method proposed in this study will have 
certain advantages over other conventional methods when it 
becomes possible to solve 3D forward problems within a 
reasonable computation time and to challenge the 3D inverse 
problems. First of all, the use of the full waveform enables 
us to perform the inversion with data from less stations, 
when compared with the methods that employ only the direct 
waves. Moreover, compared with a conventional method 
such as the tomography, in which the parameters have to be 
estimated at all grid points, the number of parameters to be 
estimated is much less in our method. By extending equation 
(4), the representation of the boundary shape in a 2D prob- 
lem and a 3D problem is represented as 

~(x, y) = G°(x, y) + ~ Pv x co(x, y), (8) 
i,j 

where Pij is a parameter that represents the boundary shape 
and 

cii(x, y) = ci(x)cj(y). (9) 

The right side of this equation is a basis function defined in 
equation (3). 

One difficulty of extending our inversion method to the 
3D problem, and also to the 2D P-SV problem, is the eval- 
uation of the incident wave field. While a simple SH plane 
wave is assumed in this study, the incident wave field in 
reality consists of P waves, S waves, and surface waves, 
which makes it necessary to separate them. One possible 
solution to evade this problem would be the introduction of 
a point source. In any case, the high possibility of extending 
our inversion method to the 2D P-SV problems and the 3D 
problems has to be emphasized. 

Conclusions 

We developed a method for estimating the boundary 
shape of a basin structure using waveform inversion. We 
formulated a boundary shape waveform inversion for the 
case of a plane SH wave impinging on a two-layered struc- 
ture and examined the validity of that inversion with nu- 
merical experiments. 

The boundary shape of the entire basin could be esti- 
mated almost perfectly from records taken from only a small 
number of surface stations by using the full waveform, in- 
cluding the later phases, when an appropriate initial model 
is given. When the value of Affmo~ is large, which means that 
the initial model is inappropriate, the computation becomes 
unstable. In such cases, stable computation may be obtained 
by a hierarchical scheme of inversion that consists of grad- 
ually increasing the number of model parameters. To check 
the effects of errors on the inversion, we investigated cases 
of data containing noise and cases of given parameters con- 
taining errors. Although errors do affect the inversion, the 
structure can be estimated roughly as long as the errors are 
not very large (noise in the records less than 15% and the 
errors of S-wave velocity and the incident angle respectively 
within 5% and 5°). 

Our simple assumption of a two-dimensional, two-lay- 
ered structure and an SH wave field does not stem from any 
essential difficulty. The method described, therefore, can be 
expanded to more general problems, such as the P-SV wave 
field. 
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