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The Importance of the Dynamic Source Effects on Strong Ground Motion

during the 1999 Chi-Chi, Taiwan, Earthquake: Brief Interpretation

of the Damage Distribution on Buildings

by L. A. Dalguer, K. Irikura, J. D. Riera and H. C. Chiu

Abstract The 1999 Chi-Chi, Taiwan, earthquake, that originated on a low-angle
reverse fault, showed complexity and uncommon characteristics. The records show
that the hanging-wall side is characterized by larger particle motions than the foot-
wall, and the ground motion is stronger in the northern part than in the southern part
of the causative fault. Although the strongest ground motion occurred near the north-
ern part of the trace, structural damage was heavier in the southern part. In order to
get a better understanding of the complex damage distribution caused by this earth-
quake, the dynamic rupture process was numerically simulated. Because of the dif-
ferences between the observed features of the rupture process in the northern and
southern parts of the fault, each part was modeled independently by using a 2D
discrete element model (DEM). The principal results of the simulation show that the
velocity ground motions in the northern part, in the frequency range of 0.5–2 Hz
(natural frequency range of standard structures), are small near the surface break,
thus, light structural damage might be predicted near the surface rupture. Moreover,
in the northern part the fault rupture propagation reaches the surface with a very
slow velocity (about 1.2 km/sec); however, in the southern part the rupture propa-
gation reaches the surface with higher velocity (about 3.0 km/sec). These differences
between the models could explain why the ground motion near the surface rupture
in the northern part caused less damage in structures than the ground motion in the
southern part.

Introduction

Due to its complexity and uncommon characteristics,
the Chi-Chi, Taiwan, earthquake (Mw 7.6) of 20 September
1999 had a great impact on the international community of
scientists and engineers devoted to seismology and earth-
quake engineering. The earthquake originated on a low-
angle reverse fault with a strike of nearly N5�E and a dip
between 25� and 36� (Shin et al., 2000). The rupture of the
causative fault reached the surface and propagated along
about 80 km, starting in the south and extending northward
on the Chelongpu fault, as shown in Figure 1. Spectacular
horizontal displacements up to 9.0 m and vertical offsets of
1.0 to 8.0 m were registered along the surface rupture. The
earthquake was one of the most destructive and largest earth-
quakes of this century in Taiwan. The death toll was 2333,
with 10002 people injured (Shin et al., 2000). The epicenter
of this shallow earthquake was located near the small town
of Chi-Chi (23.87N, 120.75E), 150 km (90 miles) south of
Taipei. In order to analyze the damage distribution caused
by the earthquake, the northern and southern zones are de-
fined as shown in Figure 2a and b. Although the stations

records show that the strongest ground motion and the larg-
est displacements were located in the northern part of the
Chelongpu fault, structural damage in that area appears to
be less than in the southern portion. In fact, only buildings
directly on the surface rupture had severe damage in the
northern zone. In general, the most severe damage on build-
ings caused by the ground shaking was registered in the
hanging wall and was greater in the southern part than in the
northern portion (Fig. 2a). From the distribution of damaged
structures, shown in Figure 2a, and the population distribu-
tion along the causative fault, shown in Figure 2b, we can
observe that the northern part of the fault (except for its final
portion) has higher population density than the southern part
(near the epicenter area); however, damage is larger in the
southern part. Such difference in the damage distribution can
be inferred from Figure 3, which shows a comparison of the
spectral pseudovelocity from records of stations located in
the north (TCU052) and south (TCU129 and TCU089). The
peak velocity for frequencies less than 1.0 Hz is larger in
the northern part. On the contrary, for frequencies greater
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Figure 1. Location of the surface rupture of the
Chelongpu fault; stations records used for comparison
and sections of the northern and southern model.

than 1.0 Hz, the peak velocity ground motion is larger in the
southern part. This means that the northern region generated
stronger ground motion at low frequencies than did the
southern region. Figure 2a also shows the highest concen-
tration of damage in a small area at the end of the fault in
the northern part, where the rupture of the fault stopped,
turning suddenly to the east. This region of the fault is out
of our scope because of its particular complexity, escaping
from the purpose of this article to explain the general damage
distribution caused by the earthquake.

In order to better understand the complex damage dis-
tribution caused by this earthquake, we performed a numer-
ical simulation of the dynamic rupture process. Since the
faulting process appears to have been nearly pure thrust
along the various fault segments, a 2D discrete element
model (DEM) was employed to perform a dynamic simula-
tion of the rupture process and of the near-fault ground mo-
tion. On account of the differences in the observed features
of the rupture process in both parts of the fault, each part
was modeled independently. The dynamic rupture process
simulation of the southern part was already presented by the
authors in a previous article (Dalguer et al., 2001). In this
article we simulated the mechanism of the reverse fault near
the hypocentral area, as well as the near-source ground mo-
tion, the results obtained closely matching the observed

ground-motion records. We showed that this kind of fault
generates large differences between the near-source ground
motions on the hanging wall and on the footwall. The ground
motions on the hanging wall are larger than in the footwall,
and the numerical simulation suggests that such a difference
is principally caused by the asymmetric geometry of the hang-
ing wall and footwall. For this earthquake, where the rupture
of the fault reaches the surface, the effect of the asymmetry
on the ground motion is considerable. The characteristics of
this kind of earthquakes (dipping fault) were also shown by
Mikumo and Miyatake (1993) in their investigation of the
dynamic rupture process of the 1961 Kita-Mino earthquake
in central Japan and by previous theoretical dynamic simu-
lation of dipping fault, for example Nielsen (1998), Shi et
al. (1998), Oglesby et al. (1998, 2000), as well as that ob-
served in the foam rubber experiment of a thrust fault pre-
sented by Brune (1996).

Dynamic Model

Several attempts to perform numerical analyses of the
dynamic rupture processes of a fault have been described in
the literature. The pioneering work of Kostrov (1966) sim-
ulated the spontaneous propagation of an anti-plane shear
crack. Das and Aki (1977) and Andrews (1976), using the
slip-weakening model as a friction law of the fault, simulated
spontaneous rupture propagation of an in-plane shear crack.
Subsequently, the rupture process of the fault was simulated
with more sophisticated models (e.g., Mikumo and Miya-
take, 1978; Day, 1982a,b; Virieux and Madariaga, 1982;
Cochard and Madariaga, 1994, Fukuyama and Madariaga,
1998; Inoue and Miyatake, 1998; Madariaga et al., 1998).
Dynamic models are frequently used to study the physics of
earthquakes, as related to the rupture process of the fault.
Although few efforts were devoted to the simulation of
ground motion based on dynamic models, some recent con-
tributions should be cited. Olsen et al. (1997) simulated the
rupture process and near field ground motion of the 1992
Landers (California) earthquake using a finite-difference
method in the frequency range 0.1 to 0.5 Hz. Inoue and
Miyatake (1998) simulated theoretical strong ground motion
generated from the rupture process on a shallow strike-slip
fault using a 3D finite-difference method in frequencies up
to 2.0 Hz.

In this article, we simulate the rupture dynamic of a
preexisting fault and near-source ground motion, solving the
elastodynamic equation of motion using the discrete element
method (DEM). The DEM is widely employed in engineering
to designate lumped mass models in a truss arrangement, as
opposed to finite element method (FEM) models that may
also consist of lumped masses, but normally require to
mount a full stiffness matrix for response determination. The
term has also been used for models of solids consisting of
assemblies of discrete elements, such as spheres in elastic
contact, employed in the analysis of perforation or penetra-
tion of concrete or rock. It should be noted that the desig-
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Figure 2. (a) Damage distribution of buildings in Nantou and Taichung area: orange
dots show completely damaged areas and green dots show severely damaged areas
(Architecture & Building Research Institute, Ministry of Interior, ROC, Taipei, Tai-
wan); (b) Population distribution along the causative fault (Tsai and Huang, 2000). The
red line represent the Chelungpu fault (causative fault of the 1999 Chi-Chi earthquake),
and the purple line in part a is the Shuangtung fault.

Figure 3. Comparison of pseudo–spectral velocity for records of stations at the
northern and southern parts.

nation lattice models, common in physics, may be more ad-
equate, although it omits reference to a fundamental property
of the approach, which is the lumped-mass representation.
In the present DEM formulation, orthotropic solids are rep-
resented by a three-dimensional periodic trusslike structure
using cubic elements as shown in Figure 4. This model is
based on earlier developments in aeronautical engineering
in which, for purposes of structural analysis, it is often nec-
essary to establish the equivalence between trusslike struc-
tural systems and a continuous medium. Nayfeh and Hefsy

(1978) established the equivalence requirements between the
cubic arrangement shown in Figure 4 and an orthotropic
elastic medium. The method leads to results that converge
to solutions for a linear elastic continuum in dynamic prob-
lems. Riera and Rocha (1991) used the approach in fracture
studies, Doz and Riera (1995) employed the method to
model the stick-and-slip motion along friction surfaces, Dal-
guer et al. (1999) evaluated the foreshock and periodicity of
earthquakes, and Dalguer et al. (2001) modeled a fault dy-
namic rupture using the slip-weakening friction model to
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Figure 4. Numerical model used for the dynamic
simulation (DEM): (a) basic cubic module, (b) gen-
eration of prismatic body, and (c) representation of a
plate-strain state (no z displacements).

simulate the rupture process of the hypocentral area of the
1999 Chi-Chi (Taiwan) earthquake. Also Mora and Place
(1994), Shi et al. (1998), and Rimal (1992) used a 2D lattice
model similar to the DEM to simulate dynamic rupture of
earthquake faulting.

In the case of an isotropic elastic material, the cross-
sectional axial stiffness of the longitudinal bars in the equiv-
alent discrete model is given by:

2AE � �EL , bar length � L, (1)n

while for the diagonal bars,

2L L
AE � 2d�E , bar length � 3 , (2)�d 23�

where for approximately isotropic solids, namely, solids
with equal stiffness in the three orthogonal directions, � �
(9 � 8 d)/(18 � 24 d), d � 9v(4 � 8v), v is the Poisson’s
ratio, and E is the Young’s modules of the material. For other
situations, for example layered (orthotropic) rocks, the afore-
mentioned constants take on other values (See Nayfeh and
Hefsy, 1978). It should be stressed that no lattice or trusslike
model can exactly represent a locally isotropic continuum,
and for that matter it can also be argued that no locally iso-
tropic continuum exists. Isotropy in solids is a bulk property

that reflects the random distribution of the orientation of con-
stituent elements. Details of the calculation of the equivalent
cross-sectional axial stiffness of the normal (AEn) and di-
agonal (AEd) elements for a cubic lattice array given by
equation (1) and (2) respectively are presented in the Ap-
pendix.

In the discrete dynamic model, masses are concentrated
at nodal points. As shown in Figure 4a, solids are represented
as an array of normal and diagonal bars linking lumped
nodal masses. The dynamic analysis is performed using ex-
plicit numerical integration in the time domain. At each step
of integration a nodal equilibrium represented by equation
(3) is solved by the central finite-differences scheme.

mü � cu̇ � f , (3)i i i

where m denotes the nodal mass, c is the damping constant,
ui, u̇i , üi denote a component displacement, velocity, and
acceleration, respectively, of the nodal coordinates vector,
and fi denotes a component of the resultant forces at one
nodal point including elastic, external, and frictional forces
in direction i of the motion. In the current model, only the
nodal points that coincide with the preexisting fault, once it
breaks, are under frictional force governed by any predefined
friction law. The damping constant c was assumed to be
proportional to the rigidity k of the bars of every cubic ele-
ment, that is c � dfk, where df was assumed to be 0.005. It
is approximately a critical damping ratio (v) less or equal to
0.045.

Equation (3) represents the equation of motion of a dis-
crete point in the continuum. When this point is on the pre-
existing fault, the fault parallel component of the resultant
force (fi) is governed by the constitutive relation on the fault.

Friction Law on the Fault

Laboratory experiments on rock (e.g., Dieterich, 1979;
Ohnaka et al., 1987, Ruina, 1983) lead to slip- and/or rate-
dependent friction models. In the present model we adopt
the simple slip-weakening friction model that was first pro-
posed by Ida (1972) and extensively used for dynamic simu-
lation of fault rupture processes (e.g., Andrews, 1976; Day,
1982b; Olsen et al., 1997; Fukuyama and Madariaga, 1998;
Harris and Day, 1999). The slip-weakening friction model
is schematically represented in Figure 5. The shear force
calculated from the resultant force, fi, of equation (3) could
be expressed by the shear stress, s. The following is the rela-
tion between the shear stress, s, and the slip of the fault, u.

s � s , for u � 0,u
s � su f

s � � u � s for 0 � u � D , (4)u cDc
s � s for u � D ,f c

where su is the critical stress or the upper yield point, sf is
the final stress or the residual stress, which is considered as
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Figure 5. The slip-weakening friction model.

the dynamic friction stress level, and Dc is the slip required
for stress to drop to its dynamic friction level. We assume
that there is not back slip on the fault, which means that the
slip velocity is always greater or equal to zero.

In order to verify the adequacy of our approach, using
the DEM, to simulate a dynamic rupture process, we ana-
lyzed the spontaneous inplane rupture with the slip weak-
ening law employed by Andrews (1976). In this problem,
plane strain is assumed. The crack plane is the x-y plane, in
which the crack propagates bilaterally in the x direction and
extends indefinitely in the y direction. The medium is thus
an infinite, homogeneous, isotropic, and linearly elastic
crack plane. As indicated before, the rupture assumes a slip-
weakening law. When the crack propagates, it will not stop.

For the numerical computations, the parameters are nor-
malized as follow (Andrews, 1976): Shear stress along the
crack plane s� � s/Ds, x axis parallel to the crack plane
x� � x/Lc, time t� � tb/Lc; slip: u� � ul/LcDs; slip velocity:
v� � vl/bDs, where b is the S-wave velocity, l is the shear
rigidity, Ds is the stress drop, and Lc is the critical half-length
of a Griffith crack in plane strain derived by Andrews
(1976),

8l(k � l)G
L � , (5)c 2p(k � 2l)(s � s )o f

where k and l are the Lamé constants, and G is the effective
fracture surface energy given by

1
G � (s � s )D . (6)u f c4

We assume that that Poisson’s coefficient is 0.25, so
, where � is the P-wave velocity. These nondi-�/b � 3�

mensional quantities are equivalent to assuming that l � 1,
Ds � 1, b � 1, , Lc � 1, density q � 1. The� � 3�
calculations were performed with a grid size Dx � 0.1Lc

(length of the side of one cubic element) and (su � so)/Dr
� 0.8. Using equations (5) and (6), Dc � 1.31.

The numerical solution is obtained for the near-field
elastodynamic motion coupled to frictional sliding on a pre-
scribed crack plane. Initially the stress distribution along the

fault is in the initial stress level (so) shown in Figure 5, the
rupture is initiated artificially by imposing a stress drop to
propagates at least as fast as 0.5b, which leads to initial
stresses along the fault that increase monotonically without
any relative slipping along the fault. Eventually, the interface
shear stress (s) at a point exceeds the local shear strength
(critical stress level su) and slip at a node occurs, governed
by the slip weakening model shown in Figure 5 and repre-
sented by equation (4). Considering that the seismic radia-
tion depends only on the stress change (stress drop) during
the earthquake, and not on the total stress, we assume that
the initial stress (so) along the fault is at its zero level. There-
fore, the necessary parameters required to simulate the rup-
ture process governed by the slip-weakening friction model
are the strength excess, stress drop, and critical slip.

Figures 6 shows the results of our numerical simulation
for a theoretical spontaneous inplane rupture problem ana-
lyzed by Andrews (1976). The results are very consistent
with the solution presented by Andrews (1976). Figure 6a
shows the space–time distribution of rupture. The region be-
tween the two solid lines is the rupture front, where slip
velocity is nonzero and stress drop is incomplete. Figure 6b
shows the slip velocity as a function of position at the same
instant, at dimensionless time bt/Lc � 12.36. Figure 6c–f
shows the shear stress and slip as a function of position on
the crack plane at dimensionless time bt/Lc � 8.07, 10.38,
12.36, and 14.34, respectively. The peak of the shear stress
on the rupture front as well as the secondary peak associated
with the S waves are very precisely described by the DEM.

Assumptions in the Numerical Simulation to
Simulate the 1999 Chi-Chi Earthquake

Because of the differences in the observed features of
the rupture process in the northern and southern parts of the
causative fault of the 1999 Chi-Chi earthquake, each part
was modeled independently. The problem is tackled in a
plane-strain condition. The location of the two models sec-
tions along the surface rupture is shown in Figure 1. The
first model (southern part) is near the epicentral area, and
the second model (northern part) is near the TCU052 station.
The parameters used for the dynamic simulation and the ge-
ometry of the two fault models are shown in Figure 7. The
fault model of the southern part is the same used by Dalguer
et al. (2001). Both models share the following common as-
sumptions:

1. There is a surface sedimentary layer with a depth of 4 km
characterized by a set of P-wave velocity (4.3 km/sec),
S-wave velocity (2.5 km/sec), density 2500 kg/m3, cor-
responding to Young’s modulus 3.9 � 1010 N/m2, shear
modulus 1.56 � 1010 N/m2 and Poisson’s ratio 0.25. The
basement (seismogenic zone) is a homogeneous medium
with P-wave velocity (6.1 km/sec), S-wave velocity (3.5
km/sec), density 2700 kg/m3, corresponding to Young’s
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Figure 6. Dynamic solution, resolved by the DEM, of the spontaneous inplane rup-
ture problem presented by Andrews (1976). (a) Space–time of rupture propagation.
Region between the two solid lines is the rupture front, where slip velocity is nonzero
and stress drop is incomplete. Dashed line labeled P, S, and R represents the wave front
of the compressional, shear, and Rayleigh waves, respectively, as a reference (Rayleigh
wave velocity � 0.9194b). (b) Dimensionless slip velocity, v� � vl/bDs, as a function
of position on the crack at time the dimensionless time bt/Lc � 8.07. Shear stress and
slip as a function of position on the crack plane at dimensionless time bt/Lc � (c) 8.07,
(d) 10.38, (e) 12.36, and (f) 14.34, respectively. Heavier solid curve is dimensionless
slip function divided by 10, lu/10Lc(Ds); lighter solid line is the dimensionless change
of shear stress, (s/Ds).

modulus 8.37 � 1010 N/m2, shear modulus 3.35 � 1010

N/m2, and Poisson’s ratio 0.25.
2. The preliminary report of the 1999 Chi-Chi earthquake

(Shin et al., 2000), suggests a focal depth of 7–11 km
and dip of 25�–36�. We selected a dip of 33�41� in order
to have an integer element size of the DEM to model the
free surface. The hypocenter is located at a depth of
8.5 km.

3. The slip-weakening friction model is adopted as the con-
stitutive relation for the fault.

4. The stress drop along the fault plane in the shallow sur-
face layer is negligible.

5. The ultimate stress, that is, the strength excess on the fault
surface in the shallow surface layer increases linearly
with depth and, in order to avoid any fault opening, we

applied a normal stress along the fault, equivalent to the
strength excess.

The choice of the parameters used for the simulation
of the dynamic rupture of a fault is a delicate issue, still
subject to debate. The author’s experience, nevertheless,
suggests that, in general, it is very unlikely that essentially
correct simulated response will result from essentially in-
correct models or parameters. For the assumption of a slip-
weakening friction law, we need to define the stress drop,
the strength excess, and the critical slip, Dc, along the fault.
The stress drop can roughly be defined from the results of
the kinematic inversion of ground motion, so we can guess
approximate asperities area (we assume that asperity is a
zone of higher stress drop than surrounding areas). The
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Figure 7. Fault models and parameters distribution used for the dynamic simulation:
(a) southern model, (b) northern model.

choice of Dc and the strength is quite difficult, since there is
no way to get them from observations, and there may be
various combinations that fit the data. This is in accordance
with the conclusion from Guatteri and Spudich (2000), who
indicate that there is no unique solution to select Dc and
strength excess. But in general, we can get some information
on Dc from several laboratory experiments and field analy-
ses. Ohnaka (1992) reported that Dc is constant within the
brittle layer, Marone and Kilgore (1993) proposed that Dc is
larger when a fault gouge zone is thicker, so, the rupture in
the shallow crust is stable due to the presence of a large
amount of gauge materials between the fault zone. And also,
from the report of Ide and Takeo (1997) who study the stress
change on the fault during the dynamic rupture propagation
in the 1995 Kobe earthquake through seismic inversion, Dc

is more than 1.0 m in the shallow crust and about 10 cm in
the brittle layer. From our numerical experiments, we ob-
served that the frequency content of the ground motion is
related to the rupture propagation velocity, a high rupture
velocity producing higher frequencies than a slow velocity.
The rupture velocity is related to Dc and the strength excess,
that is, small Dc and strength excess produce higher rupture
velocity than large Dc and strength excess. In view of the
preceding arguments, the modeling procedure in the article
was as follows: from kinematical inversion results, we can
roughly get the asperities areas and the stress drops. The
preliminary results of kinematical inversions (e.g., Iwata et
al., 2000; Ma and Mori, 2000; Yagi and Kikuchi, 2000)
show the existence of larger asperity located in the northern
part and relatively two or three small asperities in the south-
ern part. The Dc and strength excess were selected in order
to fit the damage pattern, that is, define combination of Dc

and strength excess in order to explain in a general way the
difference of the ground motion between the northern and

southern zone of the fault. Considering these observation,
and the arguments given previously, we start from the as-
sumption that Dc is larger near the free surface than at higher
depths and that it is larger in the northern region that in the
southern region. Therefore, in the model for the southern
part, the existence of three asperities with relatively small
widths (about 7 km) and stress drop between 1.5 MPa and
3 MPa were used in the basement underlying the sediments,
and the critical slip 0.5 m in the surface layer and 0.1 m in
the deep part (Fig. 7a). The northern part, on the other hand,
is assumed to have just one asperity with larger width (15
km) and higher stress-drop (between 1.5 MPa and 8 MPa),
the critical slip is 2.5 m in the surface layer and of 2.0 m in
the deep part (Figure 7b).

The fault models are constructed taking into account the
two sides of the fault. We assume that the fault has a thick-
ness equivalent to the size of one cubic cell. Once the fault
breaks, the linkage between the two surfaces of the fault is
broken, being governed by the friction law. The shear
stresses on both sides of the fault are equal in magnitude but
act in opposite directions. The models used for the simula-
tion (Fig. 7) include a preexisting fault 40 km wide in a solid
of 66 km � 28.25 km. 29832 cubic cells with 0.25 km long
sides were needed to construct the 2D model space bounded
by a free surface and three artificial boundaries that simulate
the semiinfinite space. Viscous dampers were introduced on
the artificial boundaries in order to avoid the reflection of
waves from the edges of the domain of computation. The
boundary conditions at the surface were specified as zero
shear and normal stresses. During the rupture process, only
the inertial stresses caused by the dynamic motion act on the
surface. For the numerical integration of the equation of mo-
tion, a time step of 0.05 sec was used.
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Figure 8. Slip and slip velocity along the fault: (a) southern model, (b) northern model.

Simulation Results and Discussion

The two fault models present similar characteristics, that
is, the results of the dynamic rupture process of the two
models illustrate the dynamic effects of a thrust faulting on
the ground motion. The main characteristics of dipping
faults that breaks the surface are that the slip of the fault and
the ground motion is larger in the hanging wall than in the
footwall. As we analyzed in a previous article, where we
simulated the dynamic rupture process of the southern part
(Dalguer et al., 2001), the large difference in the near-source
ground motion between the hanging wall and footwall is
caused mainly by the asymmetric geometry of the hanging
wall and footwall. We also concluded that the effect on the
ground motion of the rupture reaching the surface is strong
near the surface break of the fault, because the radiated
waves are trapped in the hanging wall, resulting in the am-
plification of the ground motion in the wedge of the hanging
wall.

The slip and slip velocity distribution along the fault
shown in Figure 8a (southern model) and b (northern model)
suggest that the total slip duration along the fault and the
final slip are larger in the northern model than in the southern

model. The peak slip velocity in the asperities of the fault
of the southern model is reached suddenly as a damped step
function. This is similar to the Kostrov’s pulse (Kostrov,
1964) that was theoretically obtained in a self-similar shear-
crack propagation. Nevertheless, although the northern
model also shows this sudden increase of the slip velocity
in the beginning of the rupture, the peak value is reached
smoothly after passing this sudden step. These results sug-
gest that the rupture process in the southern model is rougher
than in the northern model, despite the fact that the slip ve-
locity near the surface is larger in the northern model than
in the southern model, as shown in Figure 9, which shows
the space–time distribution of slip velocity of the southern
and northern model.

The comparison of the rupture propagation (Figure 10)
shows that the rupture of the northern model crosses the
asperity with supersonic velocity and suddenly changes to
subsonic velocity when it leaves the asperity. The rupture
velocity toward the free surface reaches small values be-
tween 0.9 km/sec and 1.8 km/sec, being the smallest near
the free surface. Toward the deeper part, the rupture reaches
velocities equivalent to the S-wave velocity, after leaving
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Figure 9. Space-time of slip velocity: (a) southern model, (b) northern model.

Figure 10. Comparison between the northern and
southern model of the space–time of rupture propa-
gation.

the asperity. On the other hand, the rupture of the southern
model reaches velocity equivalent to the S-wave velocity
toward the free surface, but near the free surface the rupture
accelerates reaching supersonic velocity. Similarly, toward
the deeper zone, the rupture starts with subsonic velocity and
increases monotonically reaching supersonic velocity in the
deepest part of the fault. These results suggest that the rup-
ture velocity in the northern model propagates slower than
that of the southern model. The major difference is near the
free surface where the rupture velocity of the northern model
reaches in average 1.2 km/sec, while the southern model
reaches on average 3.0 km/sec.

The comparison of the ground motion on the surface

between the northern and southern model (in a frequency
range up to 2.00 Hz) is shown in Figures 11 and 12. Figure
11 shows the final displacements, peak velocity, and peak
velocity in a frequency range of 0.5 to 2.0 Hz. Figure 12
shows the waveforms of the velocity ground motion in a
frequency range of 0.5 to 2.0 Hz. Figure 11a and h shows
that the final displacement and the peak velocity are larger
in the northern model than in the southern model. These
results show that the southern model predicts a vertical dis-
placement around 2.0 m and a horizontal displacement
around 3.5 m on the hanging wall; on the other hand, the
northern model predicts a vertical displacement around 4.0
m and a horizontal displacement around 6.5 m on the hang-
ing wall. However, when the ground-motion velocities are
filtered in a frequency range of 0.5 to 2.0 Hz, as shown in
Figures 11c and 12, the peak velocities are larger in the
southern model than in the northern model (Fig. 11c), and
also, the waveforms of Figure 12 show that the southern
model contains shorter wavelengths than the northern model,
especially on the hanging wall. These results suggest that
the northern model predicts stronger ground motions than
the southern model for lower frequency. On the other hand,
in a higher frequency range, between 0.5 and 2.0 Hz (natural
frequency range of standard structures: 1–4 story), the
ground motion is stronger in the southern model. From these
results we can conclude that although the northern model
presents stronger ground motions, the most severe damage
in structures should occur in the southern model, which is
more likely to severely excite the lower modes of standard
structures.

This differences of ground-motion intensity and pre-
dominant frequency between the northern and southern
model may be due to the effects of the dynamic parameters
of the source used for the simulation, that is, the resistance
of the fault (strength excess) and critical slip that are larger



The Importance of the Dynamic Source Effects on Strong Ground Motion during the 1999 Chi-Chi, Taiwan, Earthquake 1121

Figure 12. Comparison between the northern and
southern model results of the waveforms of the ve-
locity ground motion in a frequency range of 0.5–2.0
Hz.

Figure 11. Comparison of the final displacement
and peak velocity on the surface between the northern
model and southern model: (a) final displacement, (b)
peak velocity, (c) peak velocity in a frequency range
of 0.5–2.0 Hz.

in the northern model than in the southern model. When
these parameters increase in magnitude, the rupture process
of the fault is delayed, causing slower rupture velocity as
shown in Figure 10, where the rupture propagation of the
northern model is slower than that on the southern model.
The critical slip also affects the beginning of the slipping
process. In this zone of the slip, called the breakdown zone,
the slip velocity reaches its peak as a damped step function
similar to the Kostrov’s pulse, and the magnitude of this
peak increases when the critical slip decreases. This effect
could be observed in Figure 8a (southern model) and b
(northern model). These figures show that this peak is larger
in the southern model than in the northern model, even
though the northern model fault has a larger stress drop. This
is because the southern model has smaller critical slip than
the northern model. The effects of these parameters make
the southern model rougher in high frequencies than the
northern model.

In order to observe the effects of the faulting when the
rupture breaks the surface, in Figure 13 we compare the final
displacements and the peak velocities on the surface from
two dynamic source models: one is the southern model
shown in Figure 7a in which the rupture reaches the ground
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Figure 13. Comparison between the southern model used to simulate the 1999 Chi-
Chi earthquake in which the rupture breaks the surface (solid line), and another model
in which the rupture does not reach the surface (dashed line): (a) vertical and horizontal
component of the final displacement along the surface, and (b) vertical and horizontal
component of peak velocity along the surface.

Figure 14. Comparison between the numerical
simulation and the observations (GPS data and sta-
tions records) of the final displacements along the sur-
face near the epicentral area (southern model).

surface (solid line), and the other one is a similar model in
which the rupture is forced to stop 3 km before it reaches
the surface (dashed line). It can be clearly observed that
when the rupture reaches the surface there is a strong effect
on the ground motions very close to the surface trace. The
ground motion is enhanced when the rupture breaks the
ground surface.

In order to validate the dynamic model studied here, we
compared our results of the southern model with the obser-
vations. Figure 14 shows that the southern model predicts
final vertical displacement of about 2.0 m and horizontal
displacement of about 3.3 m in the hanging wall that agree
satisfactorily with those obtained by the Global Positioning
System (GPS) data and the final displacements of the station
records. In Figure 15a–e we also compare the waveform of
the displacement and velocity ground motions of east–west
and vertical components recorded at five stations near the
surface rupture of the epicentral area (stations TCU084 and
TCU089 on the hanging-wall side and TCU129, TCU116,
and TCU122 on the footwall side). We find that the main
characteristics of the recorded ground motion are adequately
reproduced, as observed in the simulated and observed time
histories. In the frequency range from 0.5 to 1.0 Hz, although
obtained with a 2D model, the ground-motion simulation
qualitatively matches the observations. The simulations for
stations TCU084 and TCU089, located on the hanging wall,

Figure 15. Comparison of the numerical simula-
tion with stations records of horizontal (E–W) and
vertical component of displacement, velocity, and
velocity in frequency range of 0.5–1.0 Hz: (a) for
TCU084 station, (b) for TCU089 station, (c) for
TCU129 station, (d) for TCU122 station, (e) for
TCU116 station, (f) TCU052 station. Dh and Dv are
the horizontal (east-west) and vertical components,
respectively, and Vh and Vv are the horizontal (east–
west) and vertical component of velocity ground mo-
tion, respectively.
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fit the observations well, except for the horizontal compo-
nent of the TCU084 station, which, according to Chiu
(2000), has noticeable site effects in the horizontal compo-
nent. On the other hand, the simulations for stations
TCU129, TCU122, and TCU116, located on the footwall
side, agree well with the observed motion only in the initial
part of the complete time histories. The ground motion on
the footwall side was maybe influenced by softer surface-
layer effects that are not taken into account in our simulation.

The simulation of the ground-motion records by means
of a 2D model is more feasible for the southern model be-
cause herein the 3D effects would be smaller in relation to
the geometry from the hypocenter to the site. Consequently
we can in such case perform a robust simulation using a
simplified 2D model. On the other hand, we believe that the
northern part was strongly affected by the 3D effects, ren-
dering the 2D ground-motion simulation records highly
questionable. In this context, the dynamic rupture simulation
of the northern model fault was carried out just to allow
some comparisons with the southern part, in connection with
the damage distribution, which is the objective of this article.
But even with the limitation of the northern model men-
tioned previously, we succeeded in simulating the ground
motion recorded at TCU052 station, as shown in Figure 15f,
in which the simulation closely fits the recorded motion. This
is because this station is located very close to the fault on
the hanging wall, as shown in Figures 1 and 7b, where the
dislocation of the fault is clearly recorded in the data.

Conclusions

Certainly there will be widespread disagreement on the
possibility of representing a complex earthquake such as the
1999 Chi-Chi, Taiwan, earthquake by means of a simple 2D
model. We want to stress that our intention was not to fully
simulate the rupture process of the fault nor the resulting
ground motions, for which purpose a complete 3D model
would be needed, but to provide some interpretation of the
distribution of damage on structures caused by the earth-
quake, based on the dynamic rupture process.

Using the simplified 2D DEM, it was possible to show
some aspects of the dynamic source effects on the strong
ground motion of the 1999 Chi-Chi earthquake. The ground-
motion simulation of the southern model has a satisfactory
agreement with the observed records. Also, even with the
limitation of the northern model to simulate ground-motion
records, the comparison of the simulation with the TCU052
station record is very good. These comparisons with the ob-
servations provide the validity of the results presented in this
article.

The results show that the velocity ground motions in the
northern part (hanging wall) in the frequency range of 0.5–
2 Hz (natural frequency range of standard structures) are
small near the surface break, thus, light structural damage
might be predicted near the surface rupture. The model of
the southern part presents smaller displacements and smaller

velocity ground motions than the model at the northern part.
As discussed before, in spite of this global difference, the
ground motion in the southern part, in the frequency range
of 0.5–2 Hz, is larger than in the north. Moreover, the fault
rupture propagation reaches to surface with a very slow ve-
locity (about 1.2 km/sec) in the northern part. However, in
the southern part, it reaches the surface with considerable
higher velocity (a supersonic velocity of about 3.0km/sec).
The supersonic rupture velocity is a controversial issue. In
our simulation, supersonic velocity is observed near the free
surface in the southern model because we use small strength
excess and small Dc. These values were adopted in order to
generate higher frequency ground motion than in the north-
ern model. In this context, the near source high frequency
ground motion actually observed in the strong-motion data
could be caused by possible supersonic rupture velocity in
the southern zone of the Chi-Chi earthquake.

These results suggest that the ground motion near the
fault of the 1999 Chi-Chi earthquake was affected mainly by
dynamic source effects. These source effects predict stronger
ground motions in the north for lower frequencies. However,
for higher frequencies, between 0.5 and 2.0 Hz, the ground
motion was predicted to be stronger in the southern model.
From these results we can conclude that even though the
northern model shows stronger ground motion, the most se-
vere damage to structures should be expected in the south
because it has a greater potential to severely excite the fun-
damental mode of most standard, low height structures. The
model presented in this article clearly shows that dynamic
effects of the source mechanism on strong ground motion
prediction are of fundamental importance for the assessment
of seismic hazard.
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Appendix

Determination of the Equivalent Stiffness of the Normal
and Diagonal Bars of the DEM

The determination of the equivalent axial stiffness of
the elements in a cubic lattice array, as shown in Figure 4
(equations 1 and 2), in terms of the elastic properties of an
equivalent isotropic continuum is reviewed here. This equiv-
alence was shown by Nayfeh and Hefzy (1978) and first
employed in dynamic problems by Riera (1982).

The stress-strain for a general elastic body may be writ-
ten in the indicial notation form:

r � C e , i,j � 1 . . . 6, (A1)i ij j
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where ri and ej are the independent six components of the
stress and strain tensors, respectively, and Cij are elastic con-
stants, which are 21 independent constants on account of
symmetry considerations.

For an isotropic material, the constants Cij could be a
function of only two independent constants, so Cij can be
ordered as:

C C C 0 0 011 12 12

C C C 0 0 012 11 12

C C C 0 0 012 12 11C � , (A2)ij 0 0 0 C 0 044� �0 0 0 0 C 044

0 0 0 0 0 C44

in which C11, C12, and C44 are functions of Young’s modulus
E and the Poisson’s ratio v.

Since the DEM implies a lattice-type structure consist-
ing of one-dimensional axial elements, the contribution of
each member to the overall stiffness must be duly accounted
for the sum of the average contribution of each element will
lead to the final stiffness matrix. It is assumed that the
elements are perfectly straight and present constant cross-
sectional area.

The elastic constants Cij can be transformed from one
orthogonal cartesian coordinates system xi to another x̄i (i �
1,2,3) through an expression:

(k, l � 1 . . . 3a)
Q̄ � f(Q , � ) , (A3)ij i,j kl �(i, j � 1 . . . 6)

where �n denotes the direction cosines of the transformation.
Qij and Q̄ij are the elastic constant of systems x and x̄, re-
spectively. The derivation of equation (A3) is presented in
details in Nayfeh and Hefzy (1978).

Equation (A3) is used in order to get the coefficients of
equation (A2) for the corresponding cubic model of Figure
4a. Since all elements have the single unidirectional property
E, each set of parallel bars defines a continuum with a single
effective unidirectional property, which we shall refer to as
Q11. In the context of effective modulus theories, Q11 will
be an area-averaged modulus. Thus, the value of Q11 will
depend not only upon the specific model under consideration
but also upon the spacing of the bars.

In particular, the cubic array shown in Figure 4a has
two different properties of Q11, one corresponds to the ele-
ments normal to the face of the cube ( ), and the othernQ11

corresponds to the diagonal elements ( ).dQ11

The unidirectional effective properties, and , cann dQ Q11 11

be determined by referring to the projected area normal to
each element in order to obtain the effective area. For the
normal elements, we can obtain an effective area equal to
L2/2, while for the diagonal elements it results in L2/ .3�
Thus, the unidirectional property for each element is given
by

2EAnnQ � , (A4)11 2L

3EA� ddQ � , (A5)11 2L

in which L is the side length of the basic cube, and EAn and
EAd are Young’s modulus E times the cross-sectional area
A for the normal and diagonal elements, respectively.

From equations (A4) and (A5), Q̄ij of equation (A3),
that is, the stiffness constants of a continuum equivalent to
the cubic lattice model may be obtained. As shown in Figure
4a, seven elements converge to each node of the cubic model
(three normal and four diagonals bars), hence Q̄ij can be
expressed as follows:

3
n nQ̄ � f(Q , � )ij � 11 Ikl

I�1
4

d d� f(Q , � ) (k, l � 1 . . . 3), (A6)� 11 Jkl
J�1

in which and are the direction cosines of the systemsn d� �Ikl Jkl

x̄, and x̄, , respectively.n dx xI J

Combining equations (A4), (A5), and (A6), the elastic
constants of equation (A2) can be obtained:

4nC � Q 1 � d ,11 11 � �9

4nC � Q d , (A7)12 11 � �9

4nC � Q d ,44 11 � �9

where

d 3A�Q d11
d � � . (A8)nQ 2A11 n

Therefore, the constants Cij of equation (A2) is:

4d 4d 4d
� � �1� 0 0 0
9 9 9

4d 4d 4d
� � �1� 0 0 0
9 9 9
4d 4d 4d
� � �1� 0 0 02EAn 9 9 9C � (A9)ij 2 4d

�L 0 0 0 0 0
9

4d
�� �0 0 0 0 0
9

4d
�0 0 0 0 0
9

The engineering elastic constants, Young’s modulus E,
Poisson’s ratio v, and shear modulus l may be expressed in
terms of the constants Cij using the general stress-strain re-
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lations for anisotropic materials (Nayfeh and Hefzy, 1978),
as follows:

22C12E � C � , (A10a)11 C � C11 12

C12
m � , (A10b)

C � C11 12

1
l � C . (A10c)442

Substituting in equation (A9), we obtain:

2EA (9 � 12d)nE � , (A11a)2L (9 � 8d)

4d
m � , (A11b)

9 � 8d

EA 4dn
l � . (A11c)29L

To get the equivalent values of EAn and EAd as functions
of the elastic properties of the material (which could be, for
instance, E and v), we use equation (A11) and the relation
given in equation (A8), as follows:

9m
d � , (A12a)

(4 � 8m)

2L (9 � 8d)
EA � E , (A12b)n 2(9 � 12d)

2dL (9 � 8d)
EA � E . (A12c)d

3(9 � 12d)�

Finally, the equivalent stiffness of the normal and di-
agonal elements is obtained dividing equations (A12a,b) by
the length of the respective element, being Ln � L (for nor-
mal elements) and (for diagonal elements):L � 3/2 L�d

EA L(9 � 8d)n
� E (A13a)

L 2(9 � 12d)n

EA 2 dL(9 � 8 d)d
� E (A13b)

L 3(9 � 12 d)d

The nodal masses, mi, are calculated in terms of the
volumes of influence of each node i, for the internal nodes
it results:

3qL
m � (A14)i 2

while for surface nodes, linear corner, and point corner
nodes, the mass given by equation (A14) must be divided
by 2, 4, and 8, respectively.
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